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Abstract. We consider the initial-boundary value problem for linear Friedrichs symmetrizable systems

with characteristic boundary of constant rank. We assume the existence of the strong L2 solution satis-

fying a suitable energy estimate, but we do not assume any structural assumption sufficient for existence,
such as the fact that the boundary conditions are maximally dissipative or the Kreiss-Lopatinski condi-

tion. We show that this is enough in order to get the regularity of solutions, in the natural framework

of weighted anisotropic Sobolev spaces, provided the data are sufficiently smooth.

1. Introduction and main results

It is well-known that for solutions of symmetric hyperbolic systems with characteristic boundary the
full regularity (i.e. solvability in the usual Sobolev spaces Hm) cannot be expected generally because of
the possible loss of derivatives in the normal direction to the boundary, see [42, 18].

The natural space is the anisotropic Sobolev space Hm
∗ , which comes from the observation that the one

order gain of normal differentiation should be compensated by two order loss of tangential differentiation;
such a fact was first found in [7]. The theory has been developed mostly for characteristic boundaries
of constant multiplicity (see the definition in assumption (B)) and maximally nonnegative boundary
conditions, see [7, 12, 20, 27, 29, 30, 31, 37]. For more facts about the Hm

∗ spaces we also refer to
[19, 34, 38] and to Appendix B at the end of this paper. Function spaces of this type have also been
considered in [1, 10].

Even if the boundary is characteristic, it is not always needed to make use of Hm
∗ spaces. An important

example is that of Euler equations, where, thanks to the vorticity equation, one can find the solution in
the usual Sobolev spaces Hm, see [3, 26, 9].

The equations of ideal Magneto-hydrodynamics provide an important example of ill-posedness in
Sobolev spaces Hm, see [18]. Application to MHD of Hm

∗ spaces may be found in [43, 28, 35]. Ap-
plications to general relativity are in [11, 39], see also [25]. An extension to nonhomogeneous strictly
dissipative boundary conditions has been considered in [5, 36]. For problems with a nonuniformly char-
acteristic boundary we refer to [17, 23, 32, 33].

There are important characteristic problems of physical interest where boundary conditions are not
maximally nonnegative. Under the more general Kreiss-Lopatinski condition (KL), the theory has been
developed for problems satisfying the uniform KL condition with uniformly characteristic boundaries
(when the boundary matrix has constant rank in a neighborhood of the boundary), see [16, 4] and
references therein.

However, these assumptions seem to be too restrictive for many problems of physics. For example, in
case of vortex-sheets for compressible Euler equations the KL condition holds only in weak form [8, 9].
For current-vortex sheets in ideal MHD, there also holds a weak KL condition and the free boundary is
characteristic, but not uniformly characteristic [41].

We think that it can be convenient to distinguish between the L2 existence theory of weak solutions,
and the regularity theory. In the present paper we are interested in the latter question. We assume the
existence of the strong L2 solution satisfying a suitable energy estimate, without assuming any structural
assumption sufficient for existence, such as the fact that the boundary conditions are maximally dissipative
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or satisfy the Kreiss-Lopatinski condition. We show that this is enough in order to get the regularity
of solutions, in the natural framework of weighted anisotropic Sobolev spaces Hm

∗ , provided the data
are sufficiently smooth. Obviously, the present results contain in particular what has been previously
obtained for maximally nonnegative boundary conditions.

For a given integer n ≥ 2, let Ω be an open bounded subset of Rn, lying locally on one side of its
smooth connected boundary ∂Ω. For T > 0 we set QT = Ω×]0, T [ and ΣT = ∂Ω×]0, T [. For T = +∞ we
set Q∞ = Ω×]0,+∞[ and Σ∞ = ∂Ω×]0,+∞[. We are interested in the following initial-boundary value
problem (shortly written IBVP)

Lu = F, in QT (1)
Mu = G, on ΣT (2)
u|t=0 = f, in Ω, (3)

where L is a first order linear partial differential operator

L = ∂t +
n∑
i=1

Ai(x, t)∂i +B(x, t), (4)

∂t := ∂
∂t and ∂i := ∂

∂xi
, i = 1, . . . , n.

The coefficients Ai, B, for i = 1, . . . , n, are real N ×N matrix-valued functions, defined on Q∞. The
unknown u = u(x, t), and the data F = F (x, t), G = G(x, t), f = f(x) are vector-valued functions with
N components, defined on QT , ΣT and Ω respectively. M = M(x, t) is a given real d×N matrix-valued
function; M is supposed to have maximal constant rank d, everywhere on Σ∞.

Let ν(x) = (ν1(x), . . . , νn(x)) be the unit outward normal to ∂Ω at a point x; then

Aν(x, t) =
n∑
i=1

Ai(x, t)νi(x)

is called the boundary matrix. Let P (x, t) be the orthogonal projection onto the orthogonal complement
of kerAν(x, t), denoted kerAν(x, t)⊥, defined by

P (x, t) =
1

2πi

∫
C(x,t)

(λ−Aν(x, t))−1dλ, (x, t) ∈ Σ∞,

where C(x, t) is a closed rectifiable Jordan curve with positive orientation in the complex plane, enclosing
all and only all the non-zero eigenvalues of Aν(x, t). P (x, t) is the sum of eigenprojections corresponding
to the non-zero eigenvalues of Aν(x, t). Given an arbitrary smooth extension on Q∞, denoted by the
same symbol P , then Pu is the so-called noncharacteristic component of u, while (I−P )u is the so-called
characteristic component of u.

We study the problem (1)-(3) under the following assumptions.

(A) L is Friedrichs symmetrizable, namely there exists a matrix S0, definite positive and symmetric on
Q∞, and such that the matrices S0Ai, for i = 1, . . . , n, are also symmetric.

(B) The boundary is characteristic with constant rank, namely the boundary matrix Aν is singular on
Σ∞ and 0 < r := rankAν(x, t) < N for all (x, t) ∈ Σ∞; this assumption yields that the number of
negative eigenvalues (counted with multiplicity) of Aν is constant on Σ∞.

(C) M = M(x, t) is a d×N matrix-valued function of C∞-class, and d = rankM(x, t) equals the number
of negative eigenvalues of Aν(x, t). Furthermore kerAν(x, t) ⊂ kerM(x, t), for all (x, t) ∈ Σ∞.

(D) The orthogonal projection P (x, t) onto kerAν(x, t)⊥, (x, t) ∈ Σ∞, is a matrix-valued function of
C∞-class on Σ∞. We denote by the same symbol P (x, t) an arbitrary smooth extension on Q∞.

(E) Existence of the L2 weak solution for non-homogeneous boundary conditions. Assume that S0, Ai ∈
Lip(Q∞), for i = 1, . . . , n. For all T > 0 and all matrices B ∈ L∞(QT ), there exist constants
γ0 ≥ 1 and C0 > 0 such that for all F ∈ L2(QT ), G ∈ L2(ΣT ), f ∈ L2(Ω) the problem (1)-(3),
with data (F,G, f), admits a unique solution u ∈ L2(QT ) such that Pu|ΣT ∈ L2(ΣT ). Furthermore
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u ∈ C([0, T ];L2(Ω)), and it satisfies an a priori estimate of the form

e−2γτ ||u(τ)||2L2(Ω) + γ

∫ τ

0

e−2γt||u(t)||2L2(Ω) dt+
∫ τ

0

e−2γt||Pu|∂Ω(t)||2L2(∂Ω) dt

≤ C0

(
||f ||2L2(Ω) +

1
γ

∫ τ

0

e−2γt||F (t)||2L2(Ω) dt+
∫ τ

0

e−2γt||G(t)||2L2(∂Ω) dt

)
,

(5)

for all γ ≥ γ0 and 0 < τ ≤ T .

When an IBVP admits an apriori estimate of type (5), with F = Lu, G = Mu, for all τ > 0 and
all sufficiently smooth functions u, one says that the IBVP is strongly L2 well posed, see e.g. [4].
A necessary condition for (5) is the validity of the uniform Kreiss-Lopatinski condition (UKL). (An
estimate of this form has been obtained by Rauch [21].) On the other hand, (UKL) is not sufficient
for the well-posedness and other structural assumptions have to be taken, see [4].

When dealing with homogeneous boundary conditions, it happens that one can prove the existence
of the L2 solution without the direct L2 control of the trace of Pu, as in (5). The boundary condition
has to be intended in the H−1/2 sense. For example, this happens with maximally nonnegative
boundary conditions, which are not strictly dissipative. For this case we may assume a weaker
version of (E), as follows. Observe that (F) is weaker than (E) for G = 0, because it provides no
control on the trace of Pu.

(F) Existence of the solution for homogeneous boundary conditions. Assume that S0, Ai ∈ Lip(Q∞), for
i = 1, . . . , n. For all T > 0 and all matrices B ∈ L∞(QT ), there exist constants γ0 ≥ 1 and C0 > 0
such that for all F ∈ L2(QT ), f ∈ L2(Ω) the problem (1)-(3), with data (F,G = 0, f), admits a
unique solution u ∈ C([0, T ];L2(Ω)), and it satisfies an a priori estimate of the form

e−2γτ ||u(τ)||2L2(Ω) + γ

∫ τ

0

e−2γt||u(t)||2L2(Ω) dt ≤ C0

(
||f ||2L2(Ω) +

1
γ

∫ τ

0

e−2γt||F (t)||2L2(Ω) dt

)
, (6)

for all γ ≥ γ0 and 0 < τ ≤ T .

Finally, we add the following technical assumption that for C∞ approximations of (1)-(3) one
still has the existence of L2 solutions. This stability property holds true for maximally nonnegative
boundary conditions and for uniform KL conditions.

(G) Given matrices (S0, Ai, B) ∈ CT (Hσ
∗ ) × CT (Hσ

∗ ) × CT (Hσ−2
∗ ), where σ ≥ [(n + 1)/2] + 4, enjoying

properties (A) - (E) (or (A) - (D), (F)), let (S(k)
0 , A

(k)
i , B(k)) be C∞ matrix-valued functions converg-

ing to (S0, Ai, B) in CT (Hσ
∗ )× CT (Hσ

∗ )× CT (Hσ−2
∗ ) as k →∞, and satisfying properties (A) - (D).

Then, for k sufficiently large, property (E) (resp. (F)) holds also for the approximating problems
with coefficients (S(k)

0 , A
(k)
i , B(k)).

Following Rauch [22, Theorem 7], one can prove that, for any u ∈ L2(QT ) with Lu ∈ L2(QT ) the trace
of Aνu on ΣT exists in H−1/2(ΣT ). In the same way the restrictions of u to Ω×{t = 0} and Ω×{t = T}
are well defined elements of H1/2(Ω)′.

The solution of (1)-(3), considered in statements (E), (F) is intended in the following sense: for all
v ∈ H1(QT ) such that v|ΣT ∈ (Aν(kerM))⊥ and v(·, T ) = 0 in Ω, there holds:∫

QT

〈u, L∗v〉 dx dt =
∫
QT

〈F, v〉 dx dt−
∫

ΣT

〈Aνg, v〉 dσx dt+
∫

Ω

〈f, v(0)〉 dx,

where L∗ is the adjoint operator of L and g is a function defined on ΣT such that Mg = G.

Remark 1. Boundary condition. For a given boundary matrix M(x, t) satisfying assumption (C), there
exists a matrix M0(x, t) such that M(x, t) = M0(x, t)Aν(x, t) for every (x, t) ∈ ΣT . Therefore, for
L2solutions of (1) one has

Mu = G on ΣT ⇐⇒ M0Aνu|ΣT = G on ΣT . (7)
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In order to study the regularity of solutions to the IBVP (1)-(3), we need to impose some compatibility
conditions on the data F , G, f . The compatibility conditions are defined in the usual way, see [24]. Given
the IBVP (1)-(3), we recursively define f (h) by formally taking h− 1 time derivatives of Lu = F , solving
for ∂ht u and evaluating it at t = 0. For h = 0 we set f (0) := f . The compatibility condition of order k ≥ 0
for the IBVP (1)-(3) reads as

p∑
h=0

(
p
h

)
(∂p−ht M)| t=0f

(h) = ∂ptG| t=0 , on ∂Ω , p = 0, . . . , k . (8)

The aim of the paper is to prove the following theorems. The square brackets [ ] denote the integer part.

Theorem 2. Let m ∈ N and s = max{m,
[
(n+1)/2

]
+5}. Assume that S0, Aj ,∈ CT (Hs

∗), for j = 1, . . . , n,
and B ∈ CT (Hs−1

∗ ) (or B ∈ CT (Hs
∗) if m = s). Assume also that problem (1)-(3) obeys the assumptions

(A)-(E), (G). Then for all F ∈ Hm
∗ (QT ), G ∈ Hm(ΣT ), f ∈ Hm

∗ (Ω), with f (h) ∈ Hm−h
∗ (Ω) for

h = 1, . . . ,m, satisfying the compatibility condition (8) of order m− 1, the unique solution u to (1)–(3),
with data (F,G, f), belongs to CT (Hm

∗ ) and Pu|ΣT ∈ Hm(ΣT ). Moreover u satisfies the a priori estimate

||u||CT (Hm∗ ) + ||Pu|ΣT ||Hm(ΣT ) ≤ Cm
(
|||f |||m,∗ + ||F ||Hm∗ (QT ) + ||G||Hm(ΣT )

)
, (9)

with a constant Cm > 0 depending only on Aj , B.

The next theorem covers the case when assumption (F) substitutes (E). Here we loose the control at
the boundary of Pu, see however Remark 4.

Theorem 3. Let m ∈ N and s = max{m,
[
(n+1)/2

]
+5}. Assume that S0, Aj ,∈ CT (Hs

∗), for j = 1, . . . , n,
and B ∈ CT (Hs−1

∗ ) (or B ∈ CT (Hs
∗) if m = s). Assume also that problem (1)-(3) obeys the assumptions

(A)-(D), (F), (G); then for all F ∈ Hm
∗ (QT ), f ∈ Hm

∗ (Ω), with f (h) ∈ Hm−h
∗ (Ω), for h = 1, . . . ,m,

satisfying the compatibility condition (8) of order m− 1 (with G = 0), the unique solution u to (1)–(3),
with data (F,G = 0, f), belongs to CT (Hm

∗ ). Moreover u satisfies the a priori estimate

||u||CT (Hm∗ ) ≤ C ′m
(
|||f |||m,∗ + ||F ||Hm∗ (QT )

)
, (10)

with a constant C ′m > 0 depending only on Aj , B.

For the function spaces involved in the statements above, and the norms appearing in (9), (10), we refer
to the next Section 2.

Remark 4. In case of homogeneous boundary conditions, when assumption (E) is substituted by (F),
we get no direct information about the trace of the solution at the boundary. If u ∈ CT (Hm

∗ ), m > 1, the
imbedding theorem Hm

∗ (Ω) ↪→ Hm−1(∂Ω) (see [19]) allows to obtain Pu|ΣT ∈ Hm−1(ΣT ). However, one
can see that actually any solution u ∈ CT (Hm

∗ ) has some extra regularity. In fact, one can prove that
Pu ∈ CT (Hm

∗∗), see [29, Theorem 4.2].
Because of the imbedding Hm

∗∗(Ω) ↪→ Hm−1/2(∂Ω) (see [29, 38]), and the property Mu = MPu (follow-
ing from assumption (C)), we may infer Pu|ΣT ∈ CT (Hm−1/2(∂Ω)). This shows that, under the weaker
assumption (F), the trace of the noncharacteristic component of u has a loss of half derivative at the
boundary, w.r.t. the stronger case of assumption (E) (Theorem 2).

On the other hand, in both cases (either nonhomogeneous with (E) or homogeneous with (F)) there is
no control at the boundary of the characteristic component (I−P )u. Thus we can only have (I−P )u|ΣT ∈
CT (Hm−1(∂Ω)) by the first imbedding theorem above, with the loss of one derivative.

The paper is organized as follows. In Section 2 we introduce the function spaces and some notations.
In Section 3 we give some technical results useful for the proof of the tangential regularity, discussed in
Section 4. Sections 5 and 6 contain the proof of the normal regularity for m = 1 and m ≥ 2, respectively.
Many technical results are given in the Appendices. In particular, Appendix B contains new results about
spaces Hm

∗ , which improve older results in the literature.
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2. Function Spaces

For every integer m ≥ 1, we denote by Hm(Ω), Hm(QT ) the usual Sobolev spaces of order m on Ω
and QT respectively.
In order to define the anisotropic Sobolev spaces to be used in the sequel, first we need to introduce the
differential operators in tangential direction. Let us denote

Rn+ := {x = (x1, x
′), x1 > 0, x′ := (x2, . . . , xn) ∈ Rn−1}.

Throughout the paper, for every j = 1, 2, . . . , n the differential operator Zj is defined by

Z1 := x1∂1 , Zj := ∂j , for j = 2, . . . , n .

Then, for every multi-index α = (α1, . . . , αn) ∈ Nn, the tangential (or conormal) differential operator Zα

is defined by setting
Zα := Zα1

1 . . . Zαnn

(we also write, with the standard multi-index notation, ∂α = ∂α1
1 . . . ∂αnn ).

Given an integer m ≥ 1, we introduce the Sobolev space Hm
tan(Ω) in the following way. Let us take a

covering {Uj}lj=0 of Ω as follows: first we cover ∂Ω by coordinate patches Uj , j = 1, . . . , l, with coordinate
systems

χj : Uj ∩ Ω→ {x1 ≥ 0, |x| < 1} ,

such that χj(Uj ∩ ∂Ω) = {x1 = 0 , |x| < 1}. Next we cover Ω \
⋃l
j=1 Uj by U0 ⊂⊂ Ω. Choose a partition

of unity {ψj}lj=0 subordinate to the covering {Uj}lj=0. Then one says that a distribution u belongs to
Hm
tan(Ω) if and only if ψ0u ∈ Hm(Rn) and ψju ∈ Hm

tan(Rn+), in local coordinates in Uj , for all j = 1, . . . , l,
where

Hm
tan(Rn+) := {w ∈ L2(Rn+) : Zαw ∈ L2(Rn+) , |α| ≤ m} .

The tangential Sobolev space Hm
tan(Ω) is equipped with the norm

||u||2Hmtan(Ω) := ||ψ0u||2Hm(Rn) +
l∑

j=1

||ψju||2Hmtan(Rn+) (11)

where
||w||2Hmtan(Rn+) :=

∑
|α|≤m

||Zαw||2L2(Rn+) .

Note that the definition of Hm
tan(Ω) does not depend on the choice of Uj , χj , ψj , and that the norms

arising from different choices of Uj , χj , ψj are equivalent. The same space is sometimes called conormal
Sobolev space w.r.t. ∂Rn+ and denoted Hm(Rn+; ∂Rn+), see e.g. [17].
Keeping the same notations used just above, for every positive integer m the Sobolev anisotropic space
Hm
∗ (Ω) is defined to be the set of distributions u in Ω such that ψ0u ∈ Hm(Rn) and ψju ∈ Hm

∗ (Rn+), in
local coordinates in Uj , for all j = 1, . . . , l, where

Hm
∗ (Rn+) := {w ∈ L2(Rn+) : Zα∂k1w ∈ L2(Rn+) , |α|+ 2k ≤ m} .

Hm
∗ (Ω) is equipped with the norm

||u||2Hm∗ (Ω) := ||ψ0u||2Hm(Rn) +
l∑

j=1

||ψju||2Hm∗ (Rn+) , (12)

where
||w||2Hm∗ (Rn+) :=

∑
|α|+2k≤m

||Zα∂k1w||2L2(Rn+) .

We also define the Sobolev anisotropic space Hm
∗∗(Ω) as the set of distributions u in Ω such that ψ0u ∈

Hm(Rn) and ψju ∈ Hm
∗∗(Rn+), in local coordinates in Uj , for all j = 1, . . . , l, where

Hm
∗∗(Rn+) := {w ∈ L2(Rn+) : Zα∂k1w ∈ L2(Rn+) , |α|+ 2k ≤ m+ 1, |α| ≤ m} .
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Hm
∗∗(Ω) is equipped with the norm

||u||2Hm∗∗(Ω) := ||ψ0u||2Hm(Rn) +
l∑

j=1

||ψju||2Hm∗∗(Rn+) , (13)

where
||w||2Hm∗∗(Rn+) :=

∑
|α|+2k≤m+1, |α|≤m

||Zα∂k1w||2L2(Rn+) .

The spaces Hm
tan(Ω), Hm

∗ (Ω), Hm
∗∗(Ω), endowed with their norms (11), (12), (13) respectively, are Hilbert

spaces. C∞(Ω) is dense in each of them. For an extensive study of the anisotropic spaces Hm
∗ (Ω) and

Hm
∗∗(Ω), we refer the reader to [19, 20, 29, 34, 38]. We observe that

Hm(Ω) ↪→ Hm
∗∗(Ω) ↪→ Hm

∗ (Ω) ↪→ Hm
tan(Ω) ⊂ Hm

loc(Ω) , Hm
∗∗(Ω) ↪→ H [(m+1)/2](Ω) ,

Hm
∗ (Ω) ↪→ H [m/2](Ω) , H1

∗∗(Ω) = H1(Ω) , H1
∗ (Ω) = H1

tan(Ω)
(14)

(except for Hm
loc(Ω) all imbeddings are continuous). For the sake of convenience we also set H0

∗∗(Ω) =
H0
∗ (Ω) = H0

tan(Ω) = L2(Ω). In a similar way we define the anisotropic spaces Hm
tan(QT ), Hm

∗ (QT ),
equipped with their natural norms.
Let Cj([0, T ];X) denote the space of all X-valued j-times continuously differentiable functions of t, for
t ∈ [0, T ]. We denote by W j,∞(0, T ;X) the space of essentially bounded functions, together with the
derivatives up to order j on [0, T ], with values in X. We define the spaces

CT (Hm
∗ ) :=

m⋂
j=0

Cj([0, T ];Hm−j
∗ (Ω)) , L∞T (Hm

∗ ) :=
m⋂
j=0

W j,∞(0, T ;Hm−j
∗ (Ω)) ,

with norm

||u||2CT (Hm∗ ) = ||u||2L∞T (Hm∗ ) :=
m∑
j=0

sup
t∈[0,T ]

||∂jt u(t)||2
Hm−j∗ (Ω)

.

The space CT (Hm
∗∗) is defined in a similar way. For the initial data we set

|||f |||2m,∗ :=
m∑
j=0

||f (j)||2
Hm−j∗ (Ω)

.

3. Preliminaries

In this section, we prove the tangential regularity in space-time of the weak solution. Throughout
this section, the time t is allowed to span the whole real line; therefore, setting xn+1 = t, we have
now x = (x1, . . . , xn, xn+1) ∈ Rn+1

+ := Rn+ × R. Following Nishitani and Takayama [17] we introduce an
operator ] sending u ∈ L2(Rn+1

+ ) to u] ∈ L2(Rn+1) and a ”tangential” mollifier Jε so that (Jεu)] = χε∗u],
where χε∗ is the classical mollifier in Rn+1. Using Jε we follow the same lines in Tartakoff [40], Nishitani
and Takayama [17] to get regularity of weak solution u.

Let us introduce the maps ] : L2(Rn+1
+ )→ L2(Rn+1) and \ : L∞(Rn+1

+ )→ L∞(Rn+1) by

w](x) := w(ex1 , x′)ex1/2, a\(x) = a(ex1 , x′). (15)

Both are norm preserving bijections and it is easy to see that

(aw)] = a\w] , (16)

∂j(a\) = (Zja)\, j = 1, . . . , n+ 1 , (17)

∂1(w]) = (Z1w)] +
1
2
w] , (18)

∂j(w]) = (Zjw)] , j = 2, . . . , n+ 1. (19)

It can be also proved that the map

] : Hk
tan(Rn+1

+ )→ Hk(Rn+1) (20)
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is a topological isomorphism.
We consider the following family of norms

||w||2Rn+1
+ ,k,tan,δ

:= ||w]||2Rn+1,k,δ :=
∫

Rn+1
|(w])∧(ξ)|2〈ξ〉2(k+1)〈δξ〉−2dξ, (21)

for 0 < δ ≤ 1, with 〈ξ〉2 := 1 + |ξ|2. Here (w])∧(ξ) denotes the Fourier transform of w](x) with respect to
x. Note that this norm is equivalent to ||w||Hktan(Rn+1

+ ) for each fixed δ, 0 < δ ≤ 1. When δ = 1 we write

||u||Rn+1
+ ,k,tan := ||u||Rn+1

+ ,k,tan,1.

Moreover, the following characterization of the tangential Sobolev spaces Hk
tan(Rn+1

+ ) can be proved
(cf.[17]).

Lemma 5. u ∈ Hk
tan(Rn+1

+ ) if and only if u ∈ Hk−1
tan (Rn+1

+ ) and the norm ||u||Rn+1
+ ,k−1,tan,δ remains

bounded when δ ↓ 0. In this case, we have

||u||Rn+1
+ ,k−1,tan,δ ↑ ||u||Rn+1

+ ,k,tan , as δ ↓ 0.

3.1. Tangential mollifiers. Following Nishitani and Takayama [17] we introduce suitable mollifiers,
well suited to the tangential Sobolev spaces.

Let χ be a function in C∞0 (Rn+1). For all 0 < ε < 1 set χε(y) := ε−(n+1)χ(y/ε). We define Jε :
L2(Rn+1

+ )→ L2(Rn+1
+ ) by

Jεw(x) :=
∫

Rn+1
w(x1e

−y1 , x′ − y′)e−y1/2χε(y)dy , (22)

which differs from the one introduced in Rauch [22] by the factor e−y1/2. Using (15), the following identity
can be easily proven

(Jεw)](x) = χε ∗ w](x) (23)
for all w ∈ L2(Rn+1

+ ) and 0 < ε < 1. A combination of (20), (23) and the known properties of the
convolution by χε then gives

∃C > 0 : ||Jεw||L2(Rn+1
+ ) ≤ C||w||L2(Rn+1

+ ), ∀ε > 0; (24)

∀k ≥ 1 ∃C > 0 : ∀w ∈ L2(Rn+1
+ ), Jεw ∈ Hk

tan(Rn+1
+ ) with

||Jεw||Hktan(Rn+1
+ ) ≤

C

εk
||w||L2(Rn+1

+ ), ∀ε > 0.
(25)

Moreover, we have that
[Zj , Jε] = 0 , j = 1, . . . , n+ 1. (26)

Pulling back w by ] and applying Theorem 2.4.1 in Hörmander [13] to w], we get

Proposition 6. Assume that the function χ ∈ C∞0 (Rn+1) satisfies

χ̂(ξ) = O(|ξ|p) as ξ → 0, for some p ∈ N; (27)
χ̂(tξ) = 0 , for all t ∈ R , implies ξ = 0. (28)

Then for k ∈ N with k < p, there exists C0 = C0(χ, k) > 0 such that

C−1
0 ||w||2Rn+1

+ ,k−1,tan,δ

≤
∫ 1

0
||Jεw||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε + ||w||2Rn+1

+ ,k−1,tan

≤ C0||w||2Rn+1
+ ,k−1,tan,δ

,

(29)

for all 0 < δ ≤ 1 and w ∈ Hk−1
tan (Rn+1

+ ). Moreover, the second inequality in (29) remains true also if only
(27) is satisfied.

Combining the characterization of tangential Sobolev spaces given by Lemma 5 and Proposition 6, we
get the following characterization of Sobolev spaces Hk

tan(Rn+1
+ ) by means of Jε, which will be used later.
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Proposition 7. Assume that χ ∈ C∞0 (Rn+1
+ ) satisfies assumptions (27), (28). Then for all k ∈ N with

k < p, we have that u ∈ Hk
tan(Rn+1

+ ) if and only if

a. u ∈ Hk−1
tan (Rn+1

+ );

b.
∫ 1

0
||Jεu||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε is uniformly bounded for 0 < δ ≤ 1.

3.2. Estimate of commutators. The next lemma shows that part of the commutators [L, Jε], that will
appear in the forthcoming analysis of Section 4, can be written as a sum of integral operators. We will
denote by C∞(0)(R

n+1
+ ) the resctriction onto Rn+1

+ of functions in C∞0 (Rn+1).

Lemma 8. Assume that χ ∈ C∞0 (Rn+1). If u ∈ L2(Rn+1
+ ) and if a(x) ∈ C∞(0)(R

n+1
+ ), then ([a, Jε]u)] can

be written in the form ∫
Rn+1

b(x, y) · y u](x− y)χε(y)dy. (30)

For j = 1, · · · , n+ 1, ([aZj , Jε]u)] can be written as a sum of terms of the form∫
Rn+1

b(x, y)u](x− y)χε(y)dy, (31)

and
1
ε

∫
Rn+1

b(x, y) · y u](x− y)(∂jχ)ε(y)dy. (32)

Here b(x, y) ∈ B∞(Rn+1×Rn+1), the set of all smooth functions on Rn+1×Rn+1 with bounded derivatives
of all orders.

Proof. Step 1: Let us consider ([a, Jε]u)]. By definition we get

([a, Jε]u)] = a\(u] ∗ χε)− (a\u]) ∗ χε =
∫

Rn+1
[a\(x)− a\(x− y)]u](x− y)χε(y)dy.

We notice that we can write

a\(x)− a\(x− y) =
∫ 1

0

∑n+1
i=1

∂a\

∂xi
(x− (1− t)y)yidt =

∑n+1
i=1 bi(x, y)yi, (33)

with bi(x, y) ∈ B∞(Rn+1 × Rn+1), which gives (30).
Step 2: Let us consider ([aZj , Jε]u)], j = 1, · · · , n+ 1. By definition and (26) we can write

([aZj , Jε]u)] = (aZjJεu− Jε(aZju))] = (aJεZju− JεaZju)] = ([a, Jε]Zju)] .

For j ≥ 2, noting that (Zju)](x− y) = − ∂
∂yj

u](x− y), we can write

([a, Jε]Zju)] =
∫

Rn+1 [a\(x)− a\(x− y)](Zju)](x− y)χε(y)dy

= −
∫

Rn+1 [a\(x)− a\(x− y)] ∂
∂yj

(u](x− y))χε(y)dy

= −
∫

Rn+1
∂
∂yj

(a\(x− y))u](x− y)χε(y)dy

+ 1
ε

∫
Rn+1 [a\(x)− a\(x− y)]u](x− y)

(
∂χ
∂yj

)
ε

(y)dy.

(34)

The first integral in the above equality is just of the form (31). For the second one, writing a\(x)−a\(x−y)
by (33) immediately gives a sum of terms of type (32). For j = 1 we recall that (Z1u)] = ∂1u

] − 1
2u

].
Hence, integrating by parts, we get

([aZ1, Jε]u)] = −
∫

Rn+1 [a\(x)− a\(x− y)]
[
∂
∂y1

u](x− y) + 1
2u

](x− y)
]
χε(y)dy

= −
∫

Rn+1
∂
∂y1

(a\(x− y))u](x− y)χε(y)dy − 1
2

∫
Rn+1 [a\(x)− a\(x− y)]u](x− y)χε(y)dy

+ 1
ε

∫
Rn+1 [a\(x)− a\(x− y)]u](x− y)

(
∂χ
∂y1

)
ε

(y)dy.
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The first two integrals in the above equality are just of the form (31). For the third one the same argument
used in Step 1 shows that it has the form (32). �

The following Lemma is due to Nishitani and Takayama [17, Lemma 9.2].

Lemma 9. Assume that χ ∈ C∞0 (Rn+1) satisfies (27), and let a(x, y) ∈ B∞(Rn+1×Rn+1). For α ∈ Nn+1

and k ≥ 1 there is a constant C = C(χ, k, a, α) > 0 with the following property: if u ∈ Hk−1
tan (Rn+1

+ ) and
if we set

Uε(x) =
∫

Rn+1
a(x, y)u](x− y) yαχε(y)dy

then for all 0 < δ ≤ 1 we have

∫ 1

0
||Uε||2L2(Rn+1)ε

−2k
(

1 + δ2

ε2

)−1 dε

ε
≤


C||u||2Rn+1

+ ,k−1,tan,δ
if |α| = 0,

C||u||2
H
k−|α|
tan (Rn+1

+ )
if 1 ≤ |α| ≤ k,

C||u||2
L2(Rn+1

+ )
if |α| ≥ k + 1.

(35)

Following the proof of Lemma 9 given in [17], we notice that the second inequality in (35) follows from
the sharper one∫ 1

0
||Uε||2L2(Rn+1)ε

−2k
(

1 + δ2

ε2

)−1
dε
ε ≤ C||u||

2
Rn+1

+ ,k−|α|−1,tan,δ
if 1 ≤ |α| ≤ k. (36)

Hereafter we will also use this sharper inequality (36).
By Lemma 8 and Lemma 9 we can easily derive the following result.

Lemma 10. Assume that χ ∈ C∞0 (Rn+1) satisfies (27) and let a ∈ C∞(0)(R
n+1
+ ). Assume that u ∈

Hk−1
tan (Rn+1

+ ), k ≥ 1. Then there exists a constant C > 0 such that for all 0 < δ ≤ 1 the following hold∫ 1

0

||[a, Jε]u||2L2(Rn+1
+ )

ε−2k

(
1 +

δ2

ε2

)−1
dε

ε
≤ C||u||2Rn+1

+ ,k−2,tan,δ
,

and, for j = 1, · · · , n+ 1,∫ 1

0

||[aZj , Jε]u||2L2(Rn+1
+ )

ε−2k

(
1 +

δ2

ε2

)−1
dε

ε
≤ C||u||2Rn+1

+ ,k−1,tan,δ
.

Proof. By Lemma 8 we know that

||[a, Jε]u||L2(Rn+1
+ ) = ||([a, Jε]u)]||L2(Rn+1) = ||Uε||L2(Rn+1)

where Uε is a function as in Lemma 9, with |α| = 1. Hence we get the first estimate by applying (36).
Now we consider ([aZj , Jε]u)]. By Lemma 8, for every j = 1, · · · , n + 1, this term can be written as a
sum of terms ∫

Rn+1
b0(x, y)u](x− y)χε(y)dy +

n+1∑
i=1

1
ε

∫
Rn+1

bi(x, y)u](x− y)yi (∂jχ)ε (y)dy.

The first integral is estimated using Lemma 9 with |α| = 0. For the second one we denote

V (x) =
n+1∑
i=1

1
ε

∫
Rn+1

bi(x, y)u](x− y)yi (∂jχ)ε (y)dy.

Then, for all 0 < δ ≤ 1 we get∫ 1

0
||V ||2L2(Rn+1)ε

−2k
(

1 + δ2

ε2

)−1
dε
ε

≤
∑n+1
i=1

∫ 1

0

∥∥∫
Rn+1 bi(., y)u](.− y)yi (∂jχ)ε dy

∥∥2

L2(Rn+1)
ε−2(k+1)

(
1 + δ2

ε2

)−1
dε
ε .

(37)
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Each term in the sum appearing in the right-hand side of the last inequality is of the form∫ 1

0

||Uε||2L2(Rn+1)ε
−2(k+1)

(
1 +

δ2

ε2

)−1
dε

ε
,

with a suitable function Uε as the one considered in Lemma 9, with |α| = 1 and ∂jχ instead of χ. We
notice that ∂jχ still satisfies (27), with p + 1 instead of p. Hence, applying (36) with k + 1 instead of
k, we obtain that the right-hand side of (37) can be bounded by C||u||2Rn+1

+ ,k−1,tan,δ
. Collecting all the

previous estimates we derive the second inequality of Lemma 10. �

As a consequence of Proposition 6, from Lemma 10 we derive the following.

Corollary 11. Assume that χ ∈ C∞0 (Rn+1) satisfies (27), (28), and let a ∈ C∞(0)(R
n+1
+ ). Then for all

k ≥ 1 and u ∈ Hk−1
tan (Rn+1

+ ), there exists a constant C > 0, such that for all 0 < δ ≤ 1∫ 1

0
||[a, Jε]u||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε

≤ C
(∫ 1

0
||Jεu||2L2(Rn+1

+ )
ε−2k+2

(
1 + δ2

ε2

)−1
dε
ε + ||u||2Rn+1

+ ,k−2,tan

)
,

and, for j = 1, . . . , n+ 1,∫ 1

0
||[aZj , Jε]u||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε

≤ C
(∫ 1

0
||Jεu||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε + ||u||2Rn+1

+ ,k−1,tan

)
.

3.3. Estimate of boundary terms. For the sequel, it is convenient to assume for χ the following
explicit form

χ(y) = (−∆)
p
2 φ(y), (38)

with a given function φ ∈ C∞0 (Rn+1) satifying φ̂(0) =
∫

Rn+1 φ(y)dy 6= 0; for simplicity, assume also that
p is even. It follows that χ ∈ C∞0 (Rn+1) verifies (27), (28). Assume also that suppφ ⊂ {xn+1 > 0}, so
that also

suppχ ⊂ {xn+1 > 0}. (39)
Given this function χ, for 0 < ε < 1, we define χ̃ε by formula

χ̃ε(y′) :=
∫

R
e−y1/2χε(y1, y

′)dy1 =
1
εn

∫
R
e−εy1/2χ

(
y1,

y′

ε

)
dy1 , y′ ∈ Rn . (40)

Let us emphasize that the functions χ̃ε cannot be written as

χ̃ε(y′) =
1
εn
χ̃

(
y′

ε

)
,

for some χ̃ ∈ C∞0 (Rn), because of the factor e−
εy1
2 appearing in the integral (40). Hence Theorem 2.4.1

in [13] cannot be directly applied. However, the proof of this theorem can be adapted to obtain the
following

Proposition 12. Let χ be a function in C∞0 (Rn+1) satisfying all the preceding assumptions. Then for
every 0 < k < p, there exists a positive constant C = C(χ, k, p) > 0 such that for all u ∈ Hk−1(Rn) the
estimates

C−1||u||2Rn,k−1,δ

≤
∫ 1

0

||u ∗ χ̃ε||2L2(Rn)ε
−2k

(
1 +

δ2

ε2

)−1
dε

ε
+ ||u||2Rn,k−1

≤ C||u||2Rn,k−1,δ,

(41)

hold for all 0 < δ ≤ 1.

The proof of Proposition 12 is postponed to Appendix A.
We recall the following result.
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Lemma 13. u ∈ Hk(Rn) if and only if u ∈ Hk−1(Rn) and the norm ||u||Rn,k−1,δ remains bounded when
δ ↓ 0. In this case, we have

||u||Rn,k−1,δ ↑ ||u||Rn,k , as δ ↓ 0.

The following characterization of Sobolev spaces in Rn follows from Proposition 12 and Lemma 13.

Proposition 14. Assume that χ ∈ C∞0 (Rn+1) obeys the assumptions of Proposition 12. Then for all
real 0 < k < p, we have that u ∈ Hk(Rn) if and only if

a. u ∈ Hk−1(Rn);

b.
∫ 1

0
||w ∗ χ̃ε||2L2(Rn)ε

−2k
(

1 + δ2

ε2

)−1
dε
ε are bounded uniformly for 0 < δ ≤ 1.

4. The homogeneous IBVP. Tangential regularity

We introduce the new unknown uγ(x, t) := e−γtu(x, t) and the new data Fγ := e−γtF (x, t), Gγ :=
e−γtG(x, t). Then problem (1)-(3) becomes equivalent to

Lγuγ = Fγ , in QT ,
Muγ = Gγ , on ΣT
uγ |t=0 = f , in Ω,

(42)

with
Lγ := γ + L.

In this section we concentrate on the study of the tangential regularity of the solution to the IBVP (42),
where the initial datum f is identically zero and the data Fγ and Gγ satisfy the compatibility conditions
in a more restrictive form than (8). More precisely, we concentrate on the homogeneous IBVP

Lγuγ = Fγ , in QT ,
Muγ = Gγ , on ΣT ,
uγ| t=0 = 0 , in Ω .

(43)

We remark that here and in the following the word homogeneous is referred by convention to the initial
datum f and not to the boundary datum G, contrary to the terminology used in Section 1.

For a given integer m ≥ 1, we assume that Fγ and Gγ satisfy the following conditions

∂ht Fγ| t=0 = 0 , ∂ht Gγ| t=0 = 0 , h = 0, . . . ,m− 1 . (44)

It is worth to notice that conditions (44) imply the compatibility conditions (8), in the case f = 0. We
prove the following theorem for smooth coefficients. The general case with coefficients of finite regularity
will be treated later on by a density argument.

Theorem 15. Assume that Ai, B, for i = 1, . . . , n, are in C∞(Q∞), and that problem (43) satisfies
assumptions (A)–(E); then for all T > 0 and m ∈ N there exist constants Cm > 0 and γm, with
γm ≥ γm−1, such that for all γ ≥ γm, for all Fγ ∈ Hm

tan(QT ) and all Gγ ∈ Hm(ΣT ) satisfying (44) the
unique solution uγ to (43) belongs to Hm

tan(QT ), the trace of Puγ on ΣT belongs to Hm(ΣT ) and the a
priori estimate

γ||uγ ||2Hmtan(QT ) + ||Puγ|ΣT ||
2
Hm(ΣT ) ≤ Cm

( 1
γ
||Fγ ||2Hmtan(QT ) + ||Gγ ||2Hm(ΣT )

)
(45)

is fulfilled.

The first step to prove Theorem 15 is reducing the original problem (43) to a “stationary” boundary
value problem where the time is allowed to span the whole real line and is treated, consequently, as an
additional tangential variable. To make this reduction, we are going to extend the data Fγ , Gγ and the
unknown uγ of (43) to all positive and negative times, by following methods similar to those of [4, Ch.9].
In the sequel, for the sake of simplicity, we remove the subscript γ from the unknown uγ and the data
Fγ , Gγ .
Because of conditions (44), we extend F , G through ] − ∞, 0], by setting them equal to zero for all
negative times; then for t > T we extend them by “reflection”, following Lions-Magenes [14, Theorem
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2.2]. The extended F and G vanish for all t > T sufficiently large. Let us denote by F̆ and Ğ the resulting
extensions of F and G respectively; by construction, F̆ ∈ Hm

tan(Ω× R) and Ğ ∈ Hm(∂Ω× R).
As we did for the data, the solution u to (43) is extended to all negative times, by setting it equal to zero.
To extend u also for times t > T , we use assumption (E). More precisely, for every T ′ > T we consider
the problem

Lγu = F̆|]0,T ′[ , in QT ′ ,

Mu = Ğ|]0,T ′[ , on ΣT ′ ,
u|t=0 = 0 , in Ω .

(46)

By assumption (E), (46) admits a unique solution uT ′ ∈ C([0, T ′];L2(Ω)), such that PuT ′ |ΣT ′ ∈ L
2(ΣT ′)

and the energy estimate

||uT ′(T ′)||2L2(Ω) + γ||uT ′ ||2L2(QT ′ )
+ ||PuT ′ |ΣT ′ ||

2
L2(ΣT ′ )

≤ C ′
(

1
γ
||F̆|]0,T ′[||2L2(QT ′ )

+ ||Ğ|]0,T ′[||2L2(ΣT ′ )

)
(47)

is satisfied for all γ ≥ γ′ and some constants γ′ ≥ 1 and C ′ > 0 depending only on T ′ (and the
norms ||Ai||Lip(QT ′ ), ||B||L∞(QT ′ )

). From the uniqueness of the L2 solution, we infer that for arbitrary
T ′′ > T ′ ≥ T we have uT ′′ ≡ uT ′ (uT := u) over ]0, T ′[; therefore, we may prolonge u beyond T , by
setting it equal to the unique solution of (46) over ]0, T ′[ for all T ′ > T . Thus we define

ŭ(t) :=

{
uT ′(t) , ∀ t ∈]0, T ′[ , ∀T ′ > T ,

0 , ∀ t < 0 .
(48)

By construction, we have that ŭ solves the boundary-value problem (BVP)

Lγu = F̆ , in Q ,

Mu = Ğ , on Σ ,
(49)

where, hereafter, we will make use of the notations Q := Ω × Rt and Σ := ∂Ω × Rt. In (49), the time
t is involved with the same role of the tangential space variables, as it spans the whole real line R.
Since ŭ, F̆ , Ğ are all identically zero for negative times, we can take arbitrary smooth extensions of the
coefficients of the differential operator L and the boundary operator M (which are originally defined on
Q∞ and Σ∞) on Q and Σ respectively, with the only care to preserve rank Aν(x, t) = r, rankM(x, t) = d
and kerAν(x, t) ⊂ kerM(x, t), for all t < 0. Let us fix such extensions once and for all; they will be
still denoted by S0, Ai, B, M . Therefore, (49) is now a stationary problem posed in Q, with data
F̆ ∈ Hm

tan(Q), Ğ ∈ Hm(Σ). Using the estimate (47), which holds for all T ′ > T , and noticing that F̆ , Ğ
vanish identically for large t > 0 (the same being true for ŭ, due to the finite speed of propagation), we
derive that ŭ enjoys the following estimate

γ||ŭ||2L2(Q) + ||Pŭ|Σ||2L2(Σ) ≤ C̆
(

1
γ
||F̆ ||2L2(Q) + ||Ğ||2L2(Σ)

)
, (50)

for all γ ≥ γ̆, and suitable constants γ̆ ≥ 1, C̆ > 0.
The proof of Theorem 15 will be derived as a consequence of the tangential regularity of the BVP (49).
Thus we concentrate from now on this problem.
In the sequel, for the sake of simplicity, we remove the superscript from the unknown ŭ and the data
F̆ , Ğ of (49). For the sake of convenience, let us also set N (x, t) := kerAν(x, t), M(x, t) := kerM(x, t).
By assumption (C) we have N (x, t) ⊂ M(x, t) for (x, t) ∈ Σ∞ (and also for all negative times). Recall
that d = N − dimM = rankM is equal to the number of negative eigenvalues of Aν and r = rankAν =
N − dimN ; then d ≤ r < N .
The next step is to move from the BVP (49) to a similar BVP posed in the (n+ 1)−dimensional positive
half-space Rn+1

+ := {(x1, x
′, t) : x1 > 0, (x′, t) ∈ Rn}. In order to make the wanted reduction in a proper

way, we first need some technical lemmata.

Lemma 16. Assume (A)-(D). For each x ∈ ∂Ω there exists a neighborhood U of x in Rn and an N ×N
unitary matrix-valued function T (x, t) ∈ C∞((U ∩ Ω) × R) such that, for all (x, t) ∈ (U ∩ ∂Ω) × R,
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u ∈M(x, t) is equivalent to T (x, t)u ∈ M̂ = {w ∈ RN : w1 = · · · = wd = 0},and u ∈ N (x, t) is equivalent
to T (x, t)u ∈ N̂ = {w ∈ RN : w1 = · · · = wr = 0}.

Proof. See [37, Lemma 1]. Here the assumption (C), M ∈ C∞, is used in order to find a local smoothly
varying orthonormal basis of M(x, t)⊥ ⊂ N (x, t)⊥. The assumption (D), P ∈ C∞, is used in order to
complete this basis and find a smoothly varying orthonormal basis of N (x, t)⊥; it is used also in order to
find a smooth orthonormal basis of N (x, t). Thus one has a locally defined smooth orthonormal basis of
RN which is used for the construction of the unitary matrix T (x, t). �

Lemma 17. Assume (A)-(D). For each x ∈ ∂Ω, let T (x, t) be the unitary matrix defined in (U ∩Ω)×R,
by Lemma 16. Let us define the matrix Âν(x, t) := T (x, t)S0(x, t)Aν(x, t)T (x, t)∗, (x, t) ∈ (U ∩ Ω) × R.
Then Âν is symmetric and may be written in the following block form

Âν(x, t) =

 ÂI,I1 ÂI,II1

ÂII,I1 ÂII,II1

 , (x, t) ∈ (U ∩ Ω)× R, (51)

where ÂI,I1 ÂI,II1 , ÂII,I1 ÂII,II1 are respectively r×r, r× (N−r), (N−r)×r, (N−r)× (N−r) sub-matrices.
Moreover, ÂI,I1 (x, t) is invertible on (U ∩ Ω)× R and we have

ÂI,II1 = 0, ÂII,I1 = 0, ÂII,II1 = 0, in (U ∩ ∂Ω)× R. (52)

Proof. See [29, Lemma 3.2]. �

Correspondingly we will decompose u as u = (uI , uII). After the change of dependent variables
associated to the unitary matrix T (x, t) we have Pu = (uI , 0).

To make the announced reduction into a problem in Rn+1
+ , we follow a standard localization procedure

of the problem (49) near the boundary of the spatial domain Ω. We take a covering {Uj}lj=0 of Ω and
a partition of unity {ψj}lj=0 subordinate to this covering, as in Section 2. We assume that each patch
Uj , j = 1, . . . , l, is so small that one can find the unitary matrix Tj(x, t) there defined, as above. Let us
even set T0 := In.

Given the solution u to (49), for each j = 0, . . . , l we denote uj(x, t) := Tj(x, t)ψj(x)u(x, t). For each
j = 1, . . . , l, in local coordinates as in Section 2, uj solves in the half-space Rn+1

+ a BVP of the form

(γAj0 + Lj)uj = F j +Kju, in Rn+1
+ ,

M̃uj = Gj , on Rn ,
(53)

with

Lj := Aj0(x, t)∂t +
∑n
i=1A

j
i (x, t)∂i +Bj(x, t), M̃ := (Id , 0) . (54)

Here we have denoted

Aj0 = TjS0T
∗
j , Aji = TjS0AiT

∗
j ,

Bj = TjS0BT
∗
j + TjS0∂tT

∗
j +

∑
k

TjS0Ak∂kT
∗
j ,

Kj =
∑
k

TjS0Ak∂kψj , F j = TjψjS0F, Gj = ψjG.

(55)

The boundary matrix −Aj1 has the block form as in (51), (52).
Note that the solution uj to (53), as well as the right-hand side F j + Kju are compactly supported on
{x1 ≥ 0 , |x| < 1}× [0,+∞[, whereas the boundary data Gj ’s are compactly supported on {x1 = 0 , |x| <
1}×[0,+∞[. After multiplicating by a suitable cut-off function, we may assume that Aji , B

j , i = 0, . . . , n,
have compact support as well, namely that Aji , B

j are in C∞(0)(R
n+1
+ ), as required by Lemmata 8-10.

As a next step we will prove that we can attach to the problem (53) a local counterpart of the global
estimate (50) associated to the stationary problem (49). More precisely, one can prove the following
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Lemma 18. For all j = 1, . . . , l, let Lj be the local differential operator (54), written in a system
of local coordinates mapping Uj ∩ Ω onto the unit half ball B := {x1 ≥ 0 , |x| < 1} (and Uj ∩ ∂Ω
onto D := {x1 = 0 , |x| < 1}). Then there exist constants Cj > 0 and γj ≥ 1 such that for all
ϕ ∈ L2(B× [0,+∞[) such that Ljϕ ∈ L2(B× [0,+∞[) and γ ≥ γj one has

γ||ϕ||2
L2(Rn+1

+ )
+ ||ϕI|x1=0||

2
L2(Rn) ≤ Cj(

1
γ
||(γAj0 + Lj)ϕ||2

L2(Rn+1
+ )

+ ||M̃ϕ|x1=0||2L2(Rn)) . (56)

Proof. By density, we reduce to prove the estimate above only for ϕ ∈ C∞(0)(B× [0,+∞[). We follow here
the same lines of [6]. For each j, let Tj be the unitary matrix of Lemma 16; let us denote

χj : Uj ∩ Ω→ B,
the local change of coordinates associated to the coordinate patch Uj , such that χj(Uj ∩ ∂Ω) = D.
Agreeing with the notations used in [6], we set

χj ∗v := v ◦ χ−1
j , χ∗jw = w ◦ χj ,

whenever v and w are functions defined respectively on Uj ∩ Ω and B. According to the conventions
before, in local coordinates χj the problem (53) reads as

χj ∗(γA
j
0 + Lj)χ∗j (χj ∗u

j) = χj ∗F
j + χj ∗K

ju, in Rn+1
+ ,

M̃χj ∗u
j = χj ∗G

j , on Rn .
(57)

Using (55) and that Tj is a unitary matrix, we compute that

S−1
0 T ∗j (γAj0 + Lj) = LγT

∗
j , (58)

on (Uj ∩ Ω)× R. For all ϕ ∈ C∞(0)(B× [0,+∞[) we get

γ||ϕ||2
L2(Rn+1

+ )
+ ||ϕI|x1=0||

2
L2(Rn) ≤ Cj

(
γ||χ∗jϕ||2L2(Q) + ||χ∗jϕI|Σ||

2
L2(Σ)

)
= Cj

(
γ||T ∗j χ∗jϕ||2L2(Q) + ||P (T ∗j χ

∗
jϕ)|Σ||2L2(Σ)

)
.

(59)

Then, applying estimate (50) with T ∗j χ
∗
jϕ instead of ŭ and using (58), we get

γ||T ∗j χ∗jϕ||2L2(Q) + ||P (T ∗j χ
∗
jϕ)|Σ||2L2(Σ) ≤ C0(

1
γ
||Lγ(T ∗j χ

∗
jϕ)||2L2(Q) + ||MT ∗j χ

∗
jϕ|Σ||2L2(Σ))

= C0(
1
γ
||S−1

0 T ∗j (γAj0 + Lj)χ∗jϕ||2L2(Q) + ||M̃χ∗jϕ|Σ||2L2(Σ))

≤ C̃0(
1
γ
||T ∗j (γAj0 + Lj)χ∗jϕ||2L2(Q) + ||M̃χ∗jϕ|Σ||2L2(Σ))

= C̃0(
1
γ
||(γAj0 + Lj)χ∗jϕ||2L2(Q) + ||M̃χ∗jϕ|Σ||2L2(Σ))

≤ C̃j(
1
γ
||χj ∗(γAj0 + Lj)χ∗jϕ||2L2(Rn+1

+ )
+ ||M̃ϕ|x1=0||2L2(Rn)) .

(60)

We observe that the first term in the last row of (60) is the first term of the right-hand side of (56)
written with different notation. From (59), (60) we get (56). �

In the sequel, for the sake of simplicity, we will remove all the indices and write v instead of uj , F
instead of F j + Kju, and so on. From now on M = (Id , 0). Moreover it will be convenient to recover
the notations xn+1 := t and x := (x1, x

′, xn+1).
For ε ∈]0, 1[, let us introduce the mollified solution Jεv. Then Jεv clearly satisfies the following

equation

(γA0 + L)Jεv = JεF + [γA0 + L, Jε]v , in Rn+1
+ , (61)

As regards the boundary conditions we have the following lemmata.

Lemma 19. Let v be a function in L2(Rn+1
+ ) such that Lv ∈ L2(Rn+1

+ ); then

Jεv
I
| {x1=0} = vI| {x1=0} ∗ χ̃ε. (62)
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Proof. Let us denote by C1
(0)(R

n+1
+ ) the restriction onto Rn+1

+ of functions in C1(Rn+1) with compact
support. In view of [22, Theorems 7 and 8], there exists a sequence {vν}ν≥0 of functions vν ∈ C1

(0)(R
n+1
+ )

such that

vν → v , in L2(Rn+1
+ ) , (63)

Lvν → Lv , in L2(Rn+1
+ ) , (64)

A1vν | {x1=0} → A1v| {x1=0} , in H−1/2(Rn) . (65)

From (51) and (52), (65) readily gives

vIν | {x1=0} → vI| {x1=0} , in H−1/2(Rn) . (66)

Property (24) of the mollifiers Jε and (63) imply

Jεvν → Jεv , in L2(Rn+1
+ ) . (67)

Writing
LJεvν = JεLvν + [L, Jε]vν ,

and using (24), (64) and the estimate

||[L, Jε]v||L2(Rn+1
+ ) ≤ C(

1
ε
||v||L2(Rn+1

+ ) + ||Lv||L2(Rn+1
+ )) (68)

(whose proof follows the same lines of similar calculations made below and is therefore omitted), we
obtain

LJεvν → LJεv , in L2(Rn+1
+ ) . (69)

By [22, Theorem 1], (67), (69),(51) and (52), we infer

Jεv
I
ν | {x1=0} → Jεv

I
| {x1=0} , in H−1/2(Rn) . (70)

Since vν are smooth functions, by Fubini’s theorem one computes for all ν ≥ 0

Jεv
I
ν | {x1=0}(x

′) =
∫

Rn+1 v
I
ν(0, x′ − y′)e−

y1
2 χε(y1, y

′)dy1dy
′

=
∫

Rn χ̃ε(y
′)vIν(0, x′ − y′)dy′ = vIν | {x1=0} ∗ χ̃ε(x

′).

Then (62) is obtained by letting ν →∞ in the identity above and using (70) and

vIν | {x1=0} ∗ χ̃ε → vI| {x1=0} ∗ χ̃ε in H−1/2(Rn) ,

which follows from (66) and the known properties of the convolution. �

Lemma 20. Let v ∈ L2(Rn+1
+ ) be a solution to (53). Then

MJεv = G ∗ χ̃ε , on {x1 = 0} × Rnx′,t. (71)

Proof. Recalling that Pv = (vI , 0), from (62) we derive

MJεv| {x1=0} = MPJεv|{x1=0} = M(Pv| {x1=0} ∗ χ̃ε)
= MPv| {x1=0} ∗ χ̃ε = Mv| {x1=0} ∗ χ̃ε = G ∗ χ̃ε .

�

We continue the proof of Theorem 15.
Observe in particular that supp Jεv ⊂ B × [0,+∞[ and Jεv = 0 for all t > 0 sufficiently large and ε

small, because of (39). Thus we can apply estimate (56) of Lemma 18, in order to obtain the L2 energy
estimate

γ||Jεv||2L2(Rn+1
+ )

+ ||JεvI| {x1=0}||
2
L2(Rn) ≤ C0

(
1
γ ||JεF + [γA0 + L, Jε]v||2L2(Rn+1

+ )
+ ||G ∗ χ̃ε||2L2(Rn)

)
,

(72)
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for all γ ≥ γ0. From Lemma 10 we have∫ 1

0
||[A0, Jε]v||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε +

+
∫ 1

0
||[B, Jε]v||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε ≤ C||v||

2
Rn+1

+ ,k−2,tan,δ
,

(73)

and, for j = 2, · · · , n,∫ 1

0
||[AjZj , Jε]v||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε ≤ C||v||

2
Rn+1

+ ,k−1,tan,δ
, (74)

for all k = 1, . . . ,m. As regards the commutator [A1∂1, Jε]v we prove the following lemma.

Lemma 21. For k = 1, . . . ,m, let v ∈ Hk−1
tan (Rn+1

+ ) be a solution to (53). Then there exists a constant
C > 0 such that the following estimate∫ 1

0

||[A1∂1, Jε]v||2L2(Rn+1
+ )

ε−2k

(
1 +

δ2

ε2

)−1
dε

ε

≤ C

(∫ 1

0

||Jεv||2L2(Rn+1
+ )

ε−2k

(
1 +

δ2

ε2

)−1
dε

ε
+ γ2||v||2Rn+1

+ ,k−1,tan
+ ||F ||2Rn+1

+ ,k−2,tan,δ

)
,

(75)

holds for all 0 < δ ≤ 1 and for all γ large enough.

Proof. Recalling (51), (52), let us decompose A1 as

A1 = A1
1 +A2

1 :=

 AI,I1 0

0 0

+

 0 AI,II1

AII,I1 AII,II1

 . (76)

Since A2
1 vanishes at {x1 = 0} we can write it as

A2
1(x, t) = H(x, t)x1, with H(x1, x

′, t) := 1
x1

∫ x1

0
∂1A

2
1(y, x′, t)dy, (77)

and H ∈ C∞(0)(R
n+1
+ ). This gives A2

1∂1 = HZ1 so that, again from Lemma 10, we have∫ 1

0
||[A2

1∂1, Jε]v||2L2(Rn+1
+ )

ε−2k
(

1 + δ2

ε2

)−1
dε
ε ≤ C||v||

2
Rn+1

+ ,k−1,tan,δ
, (78)

for all k = 1, . . . ,m.
Disregarding the different size of matrices and vectors, we write for the sake of simplicity [A1

1∂1, Jε]v =
[AI,I1 ∂1, Jε]vI , where it is understood that the matrix AI,I1 is everywhere invertible.

Using properties (16), (23), (26), we can derive(
[AI,I1 ∂1, Jε]vI

)]
= AI,I\1 (∂1Jεv

I)] − (AI,I\1 (∂1v
I)]) ∗ χε =

= AI,I\1 e−x1
(
Z1Jεv

I
)] − (AI,I\1 e−x1(Z1v

I)]
)
∗ χε =

= AI,I\1 e−x1
(
JεZ1v

I
)] − (AI,I\1 e−x1(Z1v

I)]
)
∗ χε =

= AI,I\1 e−x1
(
Z1v

I
)] ∗ χε − (AI,I\1 e−x1(Z1v

I)]
)
∗ χε =

=
∫

Rn+1

[
AI,I\1 (x)e−x1 −AI,I\1 (x− y)e−(x1−y1)

]
(Z1v

I)](x− y)χε(y)dy

=
∫

Rn+1

[
AI,I\1 (x)e−y1 −AI,I\1 (x− y)

]
(∂1v

I)](x− y)χε(y)dy.

(79)
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Because of the invertibility of AI,I1 , from (53) we have (where An+1∂n+1 = A0∂t)

∂1v
I = (AI,I1 )−1

(
−AI,II1 ∂1v

II +
(
F − γA0v −

n+1∑
i=2

Ai∂iv −Bv
)I)

.

Inserting the right-hand side of this equality in (79) gives different terms that we now analyse one by
one. Let us start with

J1 := −
∫

Rn+1

[
AI,I\1 (x)e−y1 −AI,I\1 (x− y)

] (
(AI,I1 )−1AI,II1 ∂1v

II
)]

(x− y)χε(y)dy.

Since AI,II1 vanishes at {x1 = 0}, we can write

−(AI,I1 )−1AI,II1 ∂1v
II = H1Z1v,

with H1 ∈ C∞(0)(R
n+1
+ ) defined as in (77). Then we infer

J1 =
∫

Rn+1

[
AI,I\1 (x)e−y1 −AI,I\1 (x− y)

]
H\

1(x− y)
(
∂1v

](x− y)− 1
2v
](x− y)

)
χε(y)dy,

where we have used (H1Z1v)] = H\
1(∂1v

] − 1
2v
]). We notice that we can write[

AI,I\1 (x)e−y1 −AI,I\1 (x− y)
]
H\

1(x− y) = b1(x, y) · y,

with b1(x, y) ∈ B∞(Rn+1 × Rn+1). Integrating by parts yields

J1 =
∫

Rn+1

(
∂
∂y1

(b1(x, y) · y)− 1
2 b1(x, y) · y

)
v](x− y)χε(y)dy

+ 1
ε

∫
Rn+1 b1(x, y) · y v](x− y)(∂1χ)ε(y)dy.

Thus J1 can be written as a sum of terms of the form (31) and (32). By applying Lemma 9 and (36), as
in the proof of the second inequality of Lemma 10, we infer∫ 1

0
||J1||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε ≤ C||v||

2
Rn+1

+ ,k−1,tan,δ
. (80)

Let us set

J2 :=
∫

Rn+1

[
AI,I\1 (x)e−y1 −AI,I\1 (x− y)

] (
(AI,I1 )−1(F − γA0v −Bv)I

)]
(x− y)χε(y)dy.

We notice that we can write[
AI,I\1 (x)e−y1 −AI,I\1 (x− y)

] (
(AI,I1 )−1

)\
(x− y) = b2(x, y) · y,

with b2(x, y) ∈ B∞(Rn+1 × Rn+1). Thus J2 can be written as a sum of terms of the form (30) in F and
v. By (36) we infer∫ 1

0
||J2||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε ≤ C||F ||

2
Rn+1

+ ,k−2,tan,δ
+ Cγ2||v||2Rn+1

+ ,k−2,tan,δ
, (81)

for γ large enough. Finally let us set

J3 := −
n+1∑
i=2

∫
Rn+1

[
AI,I\1 (x)e−y1 −AI,I\1 (x− y)

] (
(AI,I1 )−1(Ai∂iv)I

)]
(x− y)χε(y)dy.

Arguing as for (80) we infer∫ 1

0
||J3||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε ≤ C||v||

2
Rn+1

+ ,k−1,tan,δ
. (82)

Adding estimates (78), (80), (81), (82), and applying Lemma 5 and Proposition 6 eventually gives (75)
for γ large enough. �
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From (73), (74), (75) we infer∫ 1

0
||[γA0 + L, Jε]v||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε

≤ C
(∫ 1

0
||Jεv||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε + γ2||v||2Rn+1

+ ,k−1,tan
+ ||F ||2Rn+1

+ ,k−2,tan,δ

)
.

(83)

Because G ∈ Hm(Rn), from Proposition 12 and Lemma 13 we obtain∫ 1

0
||G ∗ χ̃ε||2L2(Rn)ε

−2k
(

1 + δ2

ε2

)−1
dε
ε ≤ C||G||

2
Rn,k , (84)

for all k = 1, . . . ,m. From (72), (83), (84), and Proposition 6, by taking γ large enough, we obtain

γ
∫ 1

0
||Jεv||2L2(Rn+1

+ )
ε−2k

(
1 + δ2

ε2

)−1
dε
ε +

∫ 1

0
||JεvI| {x1=0}||

2
L2(Rn)ε

−2k
(

1 + δ2

ε2

)−1
dε
ε

≤ C
(

1
γ ||F ||

2
Rn+1

+ ,k−1,tan,δ
+ ||G||2Rn,k + γ||v||2Rn+1

+ ,k−1,tan

)
,

for all k = 1, . . . ,m. Adding to both sides γ||v||2Rn+1
+ ,k−1,tan

+ ||vI| {x1=0}||
2
Rn,k−1 and taking account of

Proposition 6, Lemma 19 and Proposition 12, yields

γ||v||2Rn+1
+ ,k−1,tan,δ

+ ||vI| {x1=0}||
2
Rn,k−1,δ

≤ C
(

1
γ ||F ||

2
Rn+1

+ ,k−1,tan,δ
+ ||G||2Rn,k + γ||v||2Rn+1

+ ,k−1,tan
+ ||vI| {x1=0}||

2
Rn,k−1

)
,

(85)

for all k = 1, . . . ,m and γ large enough. By Lemma 18, v also enjoys the L2 energy estimate

γ||v||2
L2(Rn+1

+ )
+ ||vI| {x1=0}||

2
L2(Rn) ≤ C0

(
1
γ ||F ||

2
L2(Rn+1

+ )
+ ||G||2L2(Rn)

)
, (86)

for all γ ≥ γ0. Using (85) recursively for k = 1, . . . ,m, and taking account of (86) and Lemma 5 gives

γ||v||2Rn+1
+ ,m−1,tan,δ

+ ||vI| {x1=0}||
2
Rn,m−1,δ ≤ C

(
1
γ ||F ||

2
Rn+1

+ ,m−1,tan,δ
+ ||G||2Rn,m

)
, (87)

for all γ large enough and for all 0 < δ ≤ 1. Recovering the original notation of (53), estimate (87) reads

γ||uj ||2Rn+1
+ ,m−1,tan,δ

+ ||ujI| {x1=0}||
2
Rn,m−1,δ

≤ C
(

1
γ ||F

j +Kju||2Rn+1
+ ,m−1,tan,δ

+ ||Gj ||2Rn,m
)

≤ C
(

1
γ ||F

j ||2Rn+1
+ ,m,tan

+ 1
γ

l∑
j=0

||uj ||2Rn+1
+ ,m−1,tan,δ

+ ||Gj ||2Rn,m
)
,

(88)

for all γ large enough, for all 0 < δ ≤ 1 and each j = 1, . . . , l.
By simpler calculations, an estimate analogous to (88) (without boundary terms) can be derived for
u0 = ψ0u, where tangential norms in Rn+1

+ are replaced by usual Sobolev norms in Rn+1. Summing over
all j = 0, . . . , l the previous estimates and taking γ large enough, we derive

γ||u0||2Rn+1,m−1,δ + γ
l∑

j=1

||uj ||2Rn+1
+ ,m−1,tan,δ

+
l∑

j=1

||ujI| {x1=0}||
2
Rn,m−1,δ

≤ C
(

1
γ ||F

0||2Rn+1,m + 1
γ

l∑
j=1

||F j ||2Rn+1
+ ,m,tan

+
l∑

j=1

||Gj ||2Rn,m
)

= C
(

1
γ ||F ||

2
Hmtan(Q) + ||G||2Hm(Σ)

)
.

(89)

The above inequality shows that u ∈ Hm
tan(Q) and Pu ∈ Hm(Σ) (cf. Lemma 5 and [13]). Passing to the

limit as δ ↓ 0 in (89) gives the apriori estimate

γ||u||2Hmtan(Q) + ||Pu|Σ||2Hm(Σ) ≤ C
(

1
γ ||F ||

2
Hmtan(Q) + ||G||2Hm(Σ)

)
, (90)
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for all γ large enough. This concludes the proof of the tangential regularity of the solution u of the BVP
(49).
Recalling that this solution u is the extension of the solution uγ of the original IBVP (43), from the
tangential regularity of u we can now derive the tangential regularity of uγ , namely that uγ ∈ Hm

tan(QT )
and Puγ ∈ Hm(ΣT ). To get the energy estimate (45), we observe that extended data F̆ and Ğ are
defined in such a way that

||F̆ ||Hmtan(Q) ≤ C||Fγ ||Hmtan(QT ), ||Ğ||Hm(Σ) ≤ C||Gγ ||Hm(ΣT ) ,

with positive constant C independent of Fγ , Gγ and γ. Hence, from the energy estimate (90), we infer

γ||uγ ||2Hmtan(QT ) + ||Puγ |ΣT ||2Hm(ΣT ) ≤ γ||u||
2
Hmtan(Q) + ||Pu|Σ||2Hm(Σ)

≤ C
(

1
γ ||F̆ ||

2
Hmtan(Q) + ||Ğ||2Hm(Σ)

)
≤ C

(
1
γ ||Fγ ||

2
Hmtan(QT ) + ||Gγ ||2Hm(ΣT )

)
which concludes the proof of Theorem 15.

For the homogeneous IBVP with also homogeneous boundary conditions

Lγuγ = Fγ , in QT ,
Muγ = 0 , on ΣT ,
uγ| t=0 = 0 , in Ω ,

(91)

we have the following weaker version of Theorem 15.

Theorem 22. Assume that Ai, B, for i = 1, . . . , n, are in C∞(Q∞), and that problem (91) satisfies
assumptions (A)–(D) and (F); then for all T > 0 and m ∈ N there exist constants C ′m > 0 and γ′m,
with γ′m ≤ γ′m+1, such that for all γ ≥ γ′m, and for all Fγ ∈ Hm

tan(QT ) satisfying ∂ht Fγ| t=0 = 0, for
h = 0, . . . ,m− 1, the unique solution uγ to (91) belongs to Hm

tan(QT ), and the a priori estimate

γ||uγ ||Hmtan(QT ) ≤ C ′m||Fγ ||Hmtan(QT ) (92)

is fulfilled.

Proof. The proof follows the same lines of that of Theorem 15, disregarding all the estimates of boundary
terms. �

Given the tangential regularity of the solution u of the homogeneous IBVP, as in Theorem 15 or
Theorem 22, we could also prove its Hm

∗ -regularity. This can be done inductively by the following
proposition that we give below without proof. An analogous proposition holds for the homogeneous
problem (91) under assumptions (A)–(D) and (F).

Proposition 23. Assume that problem (43) satisfies assumptions (A)–(E). For every integer m ≥ 2,
assume that Fγ ∈ Hm

∗ (QT ) and Gγ ∈ Hm(ΣT ) satisfy (44). Let uγ be the solution of (43) with data Fγ ,
Gγ and γ sufficiently large. Given any integer 2 ≤ q ≤ m, assume that

uγ ∈ CT (Hq
tan) ∩ CT (Hq−1

∗ ) with ∂ν(Puγ) ∈ CT (Hq−2
∗ ) .

Then
uγ ∈ CT (Hq

∗) with ∂ν(Puγ) ∈ CT (Hq−1
∗ ) .

We will not follow this way because it doesn’t seem to be useful in view of the nonhomogeneous IBVP.
In fact, when dealing with the nonhomogeneous IBVP, as in [24] our strategy requires to subtract from
u a regularized function which satisfies at least one more compatibility condition. Unfortunately, we can
do it only for m = 1, starting with functions in H1

∗ . Since H1
∗ = H1

tan, we can already cover this case
with the regularity given in Theorem 15, without any need to increase the regularity to Hm

∗ with m ≥ 2.

5. The nonhomogeneous IBVP. Proof for m = 1

For nonhomogeneous IBVP we mean problem (1)-(3) with initial data f different from zero. We
distinguish between the case with nonhomogeneous boundary conditions, G 6= 0, and the other case with
homogeneous boundary conditions, G = 0.
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5.1. Nonhomogeneous boundary conditions. The main aim of this section is to prove the following
theorem.

Theorem 24. Assume (S0, Ai, B) ∈ CT (Hσ
∗ ) × CT (Hσ

∗ ) × CT (Hσ−2
∗ ), for i = 1, . . . , n, where σ ≥ [(n +

1)/2] + 4, and that problem (1)-(3) obeys the assumptions (A)–(E), (G). Then for all F ∈ H1
∗ (QT ),

G ∈ H1(ΣT ), f ∈ H1
∗ (Ω), with f (1) ∈ L2(Ω), satisfying the compatibility condition M|t=0f|∂Ω = G|t=0,

the unique solution u to (1)–(3), with data (F,G, f), belongs to CT (H1
∗ ) and Pu|ΣT ∈ H1(ΣT ).

Moreover, there exists a constant C1 > 0 such that u satisfies the a priori estimate

||u||CT (H1
∗)

+ ||Pu|ΣT ||H1(ΣT ) ≤ C1

(
|||f |||1,∗ + ||F ||H1

∗(QT ) + ||G||H1(ΣT )

)
. (93)

Notice that Theorem 24 yields Theorem 2 for m = 1.
As a first step of the proof, we approximate the data with regularized functions satisfying one more

compatibility condition.

Lemma 25. Assume that problem (1)-(3) obeys the assumptions (A)–(D). Let F ∈ H1
∗ (QT ), G ∈

H1(ΣT ), f ∈ H1
∗ (Ω), with f (1) ∈ L2(Ω), such that M|t=0f|∂Ω = G|t=0.

Then there exist Fk ∈ H3(QT ), Gk ∈ H3(ΣT ), fk ∈ H3(Ω), such that M|t=0fk = Gk|t=0, ∂tM|t=0fk +
M|t=0f

(1)
k = ∂tGk|t=0 on ∂Ω, and such that Fk → F in H1

∗ (QT ), Gk → G in H1(ΣT ), fk → f in H1
∗ (Ω),

f
(1)
k → f (1) in L2(Ω), as k → +∞.

Proof. For noncharacteristic homogeneous (G = 0) boundary conditions and the statement in standard
Sobolev spaces Hm, a similar proposition has been proved in [24, Lemma 3.3]. Then it has been adapted
to characteristic boundaries in [2, 20], again in standard Sobolev spaces Hm. In Hm

∗ spaces it seems that
this can be done only for m = 1, see [29, Lemma 5.1]. The present adaptation to the nonhomogeneous
case (G 6= 0) follows the same lines of the proof of [29, Lemma 5.1], so we will omit the details. �

Proof of Theorem 24. First we assume that the matrices S0, Aj , B are of C∞-class. Given the functions
Fk, Gk, fk as in Lemma 25, we first calculate through equation Lu = Fk, u|t=0 = fk, the initial time
derivatives f (1)

k ∈ H2(Ω), f (2)
k ∈ H1(Ω). Then we take a function wk ∈ H3(QT ) such that

wk|t=0 = fk, ∂twk|t=0 = f
(1)
k , ∂2

ttwk|t=0 = f
(2)
k .

Notice that this yields
(Lwk)|t=0 = Fk|t=0, ∂t(Lwk)|t=0 = ∂tFk|t=0. (94)

Now we look for an approximated solution uk of (1)-(3) with data Fk, Gk, fk, of the form uk = vk + wk,
where vk is solution to

Lvk = Fk − Lwk, in QT
Mvk = Gk −Mwk, on ΣT
vk|t=0 = 0, in Ω.

(95)

Let us denote again Lγ = γ + L, ukγ = e−γtuk, vkγ = e−γtvk and so on. Then (95) is equivalent to

Lγvkγ = Fkγ − Lγwkγ , in QT
Mvkγ = Gkγ −Mwkγ , on ΣT
vkγ|t=0 = 0, in Ω.

(96)

We easily verify that (94) yields

(Fkγ − Lγwkγ)|t=0 = 0, ∂t(Fkγ − Lγwkγ)|t=0 = 0,

and M|t=0fk|∂Ω = Gk|t=0, ∂tM|t=0fk|∂Ω +M|t=0f
(1)
k|∂Ω = ∂tGk|t=0 yield

(Gkγ −Mwkγ)|t=0 = 0, ∂t(Gkγ −Mwkγ)|t=0 = 0.

Thus the sufficient conditions (44) hold for h = 0, 1, we may apply Theorem 15 for γ large enough, and
find vk ∈ H2

tan(QT ), with Pvk|ΣT ∈ H2(ΣT ). Accordingly we infer uk ∈ H2
tan(QT ) ↪→ CT (H1

∗ ), with
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Puk|ΣT ∈ H2(ΣT ). Moreover uk ∈ L2(QT ) solves

Luk = Fk, in QT
Muk = Gk, on ΣT
uk|t=0 = fk, in Ω.

(97)

Take a covering {Uj}lj=0 of Ω and a partition of unity {ψj}lj=0 subordinate to this covering, as in Section
2. In each patch Uj , j = 1, . . . , l, we find the unitary matrix Tj(x, t) of Lemma 17; we also set T0 := In.
For each j = 0, . . . , l we denote ujk(x, t) := Tj(x, t)ψj(x)uk(x, t) and define similarly F jk , G

j
k, f

j
k . In local

coordinates each ujk solves a problem of the form

Ljujk = F jk +Kjuk, in Rn+×]0, T [,
M̃ujk = Gjk, on {x1 = 0} × Rn−1

x′ ×]0, T [,
ujk|t=0 = f jk , in Rn+,

with Lj , M̃ as in (54). The boundary matrix −Aj1 has the block form as in (51), (52) and Kju is a certain
operator of order 0 (see [29]) that can be absorbed in Bj by considering the compound system of all
j = 0, . . . , l. After doing that we are lead to consider the problem

Ljujk = F jk , in Rn+×]0, T [,
M̃ujk = Gjk, on {x1 = 0} × Rn−1

x′ ×]0, T [,
ujk|t=0 = f jk , in Rn+.

(98)

We look for the problem solved by Zuk = (Z1uk, . . . , Zn+1uk) ∈ H1
tan(QT ) = H1

∗ (QT ) (where Zn+1 =
∂t). As already observed by Rauch [22], there exist matrices Γβ ,Γ0,Ψ such that

[Lj , Zi] = −
∑
|β|=1 ΓβZβ + Γ0 + ΨLj , i = 1, . . . , n+ 1. (99)

As we will see more in detail in Lemma 41, Γβ looses at most one normal and one tangential derivative
w.r.t. the Aj ’s (i.e. a weight 3 in Hm

∗ spaces) and Γ0,Ψ loose at most one tangential derivative (weight 1
in Hm

∗ spaces). However, for smooth matrices Aj , B we do not need to care about that loss of regularity.
For higher order commutators one proves that for each α there exist matrices Γα,β ,Γα,γ ,Ψα,γ such

that
[Lj , Zα] = −

∑
|β|=|α| Γα,βZ

β +
∑
|γ|<|α| Γα,γZ

γ +
∑
|γ|<|α|Ψα,γZ

γLj . (100)
These commutators will be detailed in the proof of Subsection 6.1.

Again, for the sake of simplicity, we remove the indices j and write M instead of M̃ . Applying the
operators Zi to (98) and taking account of (99), we infer that Zuk solves problem

LZiuk +
∑
|β|=1 ΓβZβuk = (Zi + Ψ)Fk + Γ0uk, in Rn+×]0, T [,

MZiuk = ZiGk, on {x1 = 0} × Rn−1
x′ ×]0, T [,

Ziuk|t=0 = Zifk, in Rn+.
(101)

Applying the a priori estimate (5) to a difference of solutions uk − uh of problems (97), (101) readily
gives

||uk − uh||CT (H1
∗)

+ ||P (uk − uh)|ΣT ||H1(ΣT )

≤ C
(
|||fk − fh|||1,∗ + ||Fk − Fh||H1

∗(QT ) + ||Gk −Gh||H1(ΣT )

)
.

From Lemma 25 we infer that {uk} is a Cauchy sequence in CT (H1
∗ ), and {Puk|ΣT } is a Cauchy sequence

in H1(ΣT ). Therefore there exists a function in CT (H1
∗ ) which is the limit of {uk}. Passing to the limit in

(97) as k →∞, we see that this function is a solution to (1)-(3). The uniqueness of the L2 solution yields
u ∈ CT (H1

∗ ) and Pu|ΣT ∈ H1(ΣT ). Applying the a priori estimate (5) to the solutions uk of problems
(97), (101), and passing to the limit finally gives (93).

Up to now we have considered matrices S0, Aj , B of C∞-class. Now we wish to solve the problem with
coefficients with finite regularity as in Theorem 2, by a density argument.

Given matrices S0, Aj , B with the properties prescribed in the statement of Theorem 24, let us take
approximating sequences S

(k)
0 , A

(k)
j , B(k) in C∞, such that S(k)

0 → S0, A(k)
j → Aj in CT (Hσ

∗ ), and
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B(k) → B in CT (Hσ−2
∗ ), as k →∞, where σ ≥ [(n+ 1)/2] + 4. We may also assume that S(k)

0 is definite
positive, and that the new boundary matrix in local coordinates has the same properties as in (51), (52).
This yields operators L(k) converging to L, where assumptions (A)–(D) are still satisfied.

In this context now we prove the following result. To avoid overloading with the introduction of a new
notation, we use the same symbols of Lemma 25.

Lemma 26. There exist Fk ∈ H3(QT ), Gk ∈ H3(ΣT ), fk ∈ H3(Ω), such that M|t=0fk = Gk|t=0 on ∂Ω,
and such that Fk → F in H1

∗ (QT ), Gk → G in H1(ΣT ), fk → f in H1
∗ (Ω), f (1)

k → f (1) in L2(Ω), as
k → +∞, where now f

(1)
k is defined by

f
(1)
k +

n∑
i=1

A
(k)
i|t=0∂ifk +B

(k)
|t=0fk = Fk|t=0 in Ω.

Proof. The proof is quite similar to that of Lemma 25, somehow easier because here we require only one
compatibility condition. For all details we refer again to [29, Lemma 5.1]. �

We consider the problems
L(k)u(k) = Fk, in QT
Mu(k) = Gk, on ΣT
u

(k)
|t=0 = fk, in Ω.

The operator L(k) has C∞ coefficients and the data have the required regularity and enjoy the compat-
ibility condition of order 0. Therefore we may apply the previous step of the proof and find solutions
u(k) ∈ CT (H1

∗ ). This is the point where we use assumption (G).
Going back again to the estimate (93), we observe that the constant C1 depends on the norms of

the S0, Aj ’s in Lip(QT ), and the norm of B in L∞(QT ) at the L2-level, and also on the L∞ norms of
Γβ ,Γ0,Ψ at the H1

∗ -level.
Since S(k)

0 , A
(k)
j are uniformly bounded in CT (H [(n+1)/2]+3

∗ ), applying the imbedding Theorem 34 shows
that they are uniformly bounded in C0([0, T ];W 1,∞)∩C1([0, T ];L∞), and therefore in Lip(QT ). Similarly
one infers that the B(k)’s are uniformly bounded in L∞(QT ).

Again, since S(k)
0 , A

(k)
j are uniformly bounded in CT (H [(n+1)/2]+4

∗ ), by Lemma 41 the approximating

matrices Γ(k)
β are uniformly bounded in C([0, T ];H [(n+1)/2]+1

∗ ). We may apply the imbedding Theorem 34
and obtain the uniform boundedness in L∞(QT ). Similarly we infer the uniform boundedness in L∞(QT )
of Γ(k)

0 ,Ψ(k).
Then the u(k)’s satisfy the apriori estimate (93) with uniformly bounded constants C(k)

1 . Therefore the
sequence {u(k)} is bounded in CT (H1

∗ ) with {Pu(k)
|ΣT } bounded in H1(ΣT ). Passing to a subsequence we

get a solution u ∈ L∞T (H1
∗ ) with Pu|ΣT ∈ H1(ΣT ). The uniqueness of the solution yields the convergence

of the whole sequence. The strong continuity in time follows by adapting Majda’s approach [15].
This completes the proof of Theorem 24.

5.2. Homogeneous boundary conditions. In case of homogeneous boundary conditions, when as-
sumption (E) is substituted by (F), we may obtain a result similar to Theorem 24, but with no infor-
mation about the trace of the solution at the boundary, see Remark 4. The proof is similar to that of
Theorem 24 and so we will omit it.

Theorem 27. Assume (S0, Ai, B) ∈ CT (Hσ
∗ ) × CT (Hσ

∗ ) × CT (Hσ−2
∗ ), for i = 1, . . . , n, where σ ≥ [(n +

1)/2] + 4, and that problem (1)-(3) obeys the assumptions (A)–(D), (F), (G). Then for all F ∈ H1
∗ (QT ),

f ∈ H1
∗ (Ω), with f (1) ∈ L2(Ω), satisfying the compatibility condition M|t=0f|∂Ω = 0, the unique solution

u to (1)–(3), with data (F,G = 0, f), belongs to CT (H1
∗ ). Moreover, there exists a constant C ′1 > 0 such

that u satisfies the a priori estimate

||u||CT (H1
∗)
≤ C ′1

(
|||f |||1,∗ + ||F ||H1

∗(QT )

)
. (102)
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6. The nonhomogeneous IBVP. Proof for m ≥ 2

The proof proceeds by induction. Assume that Theorem 2 holds up to m − 1. Let f ∈ Hm
∗ (Ω),

F ∈ Hm
∗ (QT ), G ∈ Hm(ΣT ), with f (k) ∈ Hm−k

∗ (Ω), k = 1, · · · ,m, and assume also that the compatibility
conditions (8) hold up to order m − 1. By the inductive hypothesis there exists a unique solution u of
problem (1)-(3) such that u ∈ CT (Hm−1

∗ ).
In order to show that u ∈ CT (Hm

∗ ), we have to increase the regularity of u by order one, that is
by one more tangential derivative and, if m is even, also by one more normal derivative. This can be
done as in [27, 29], with the small change of the elimination of the auxiliary system (introduced in
[27, 29]) as in [5, 31]. At every step we can estimate some derivatives of u through equations where in
the right-hand side we can put other derivatives of u that have already been estimated at previous steps.
The reason why the main idea in [27] works, even though here we do not have maximally nonnegative
boundary conditions, is that for the increase of regularity we consider the system (106) of equations for
purely tangential derivatives of the type of (1)-(3), where we can use the inductive assumption, and other
systems (108), (109) of equations for mixed tangential and normal derivatives where the boundary matrix
vanishes identically, so that no boundary condition is needed and we can apply an energy method, under
the assumption of the symmetrizable system. Without entering in too many details we briefly describe
the different steps of the proof, for the reader’s convenience.

As before, we take a covering {Uj}lj=0 of Ω and a partition of unity {ψj}lj=0 subordinate to this
covering. In each patch Uj , j = 1, . . . , l, we find the unitary matrix Tj(x, t) of Lemmata 16 and 17; we
also set T0 := In. For each j = 0, . . . , l we denote uj(x, t) := Tj(x, t)ψj(x)u(x, t) and define similarly
F j , Gj , f j . In local coordinates each uj solves a problem of the form

Ljuj = F j +Kju, in Rn+×]0, T [,
M̃uj = Gj , on {x1 = 0} × Rn−1

x′ ×]0, T [,
uj|t=0 = f j , in Rn+,

with Lj , M̃ as in (54). The boundary matrix −Aj1 has the block form as in (51), (52) and Kju is a certain
operator of order 0 (see [29]) that can be absorbed in Bj by considering the compound system of all
j = 0, . . . , l. After doing that we are lead to consider the problem

Ljuj = F j , in Rn+×]0, T [,
M̃uj = Gj , on {x1 = 0} × Rn−1

x′ ×]0, T [,
uj|t=0 = f j , in Rn+.

(103)

Again, for the sake of simplicity, we will remove the indices j and write M instead of M̃ . Hereafter we
will denote Z = (Z1, . . . , Zn+1), Zn+1 = ∂t.

6.1. Purely tangential regularity. Let us start by considering all the tangential derivatives Zαu,

|α| = m − 1. We decompose ∂1u =
(
∂1u

I

∂1u
II

)
. By inverting AI,I1 in (103)1, we can write ∂1u

I as the

sum of tangential derivatives by

∂1u
I = ΛZu+R (104)

where

ΛZu = (AI,I1 )−1
[
(An+1Zn+1u+

n∑
j=2

AjZju)I +AI,II1 ∂1u
II
]
,

R = (AI,I1 )−1(Bu− F )I .

Here and below, everywhere it is needed, we use the fact that, if a matrix A vanishes on {x1 = 0}, we
can write A∂1u = HZ1u, where H is a suitable matrix such that ||H||Hs−2

∗ (Ω) ≤ c||A||Hs∗(Ω) see Lemmata
39 and 40 in the Appendix B; this trick transforms some normal derivatives into tangential derivatives.
We obtain Λ ∈ CT (Hs−2

∗ ).
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Applying the operator Zα to (103), with α = (α′, αn+1), α′ = (α1, · · · , αn), and substituting (104)
gives equation (5.3) in [27], that is

L(Zαu) +
∑

|γ|=|α|−1

(ZAn+1Zn+1 +
n∑
j=2

ZAjZj)Zγu+
∑

|γ|=|α|−1

ZA1

(
ΛZ(Zγu)

0

)
−α1A1

(
ΛZ(Zα1−1

1 Zα2
2 · · ·Z

αn+1
n+1 u)

0

)
+
( ∑
|γ|=|α|−1

ZA1Z
γ − α1A1Z

α1−1
1 Zα2

2 · · ·Z
αn+1
n+1

)(
0
∂1u

II

)
= Fα,

(105)

with Fα ∈ H1
∗ (QT ), see [27] for its explicit expression. Equation (105) takes the form (L+B)Zαu = Fα

with B ∈ CT (Hs−3
∗ ). Notice that s− 3 ≥ [(n+ 1)/2] + 2 as required in Theorem 24.

Then we consider the problem satisfied by the vector of all tangential derivatives Zαu of order |α| =
m− 1. From (105) this problem takes the form

(L+ B)Zαu = F in Rn+×]0, T [,
MZαu = ZαG on {x1 = 0} × Rn−1

x′ ×]0, T [,
Zαu|t=0 = f̃ in Rn+,

(106)

where

L =

 L
. . .

L

 , M =

 M
. . .

M

 ,

B ∈ CT (Hs−3
∗ ) is a suitable linear operator and F is the vector of all right-hand sides Fα. The initial

datum f̃ is the vector of functions Zα
′
f (αn+1).

We have F ∈ H1
∗ (QT ), f̃ ∈ H1

∗ , Z
αG ∈ H1(ΣT ). Moreover the data satisfy the compatibility conditions

of order 0. By applying Theorem 24, we infer Zαu ∈ CT (H1
∗ ), for all |α| = m− 1.

6.2. Tangential and one normal derivatives. We apply to the part II of (103)1 the operator Zβ∂1,
with |β| = m− 2. We obtain equation (28) in [5], that is

[
(L+ ∂1A1)Zβ +

∑
|γ|=|β|−1

(ZA0∂t +
n∑
j=1

ZAj∂j)Zγ

−β1A1∂1Z
β1−1
1 Zβ2

2 · · ·Z
βn+1
n+1

]II,II
∂1u

II = G,
(107)

where the exact expression of G may be found in [5]. It is important to observe that G contains only
tangential derivatives of order at most m. Hence, we can estimate it by using the previous step and infer
G ∈ L2(QT ). Using (104) again, we write (107) as

(L̃+ C̃)Zβ∂1u
II = G, (108)

where

L̃ =

 L̃
. . .

L̃


with L̃ = AII,II0 ∂t +

∑n
j=1A

II,II
j ∂j and where C̃ ∈ CT (Hs−2

∗ ) is a suitable linear operator. Here a
crucial point is that (108) is a transport-type equation, because the boundary matrix of L̃ vanishes at
{x1 = 0}. Thus we do not need any boundary condition. We infer that equation (108) has a unique
solution Zβ∂1u

II ∈ CT (L2) := C([0, T ];L2(Rn+)), for all |β| = m − 2. Using (104) again, we deduce
Zβ∂1u ∈ CT (L2), for all |β| = m− 2.
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6.3. Normal derivatives. The last step is again by induction, as in [27], page 867, (ii). For convenience
of the reader, we provide a brief sketch of the proof.

Suppose that for some fixed k, with 1 ≤ k < [m/2], it has already been shown that Zα∂h1 u belongs to
CT (L2), for any h and α such that h = 1, · · · , k, |α| + 2h ≤ m. From (104) it immediately follows that
Zα∂k+1

1 uI ∈ CT (L2). It rests to prove that Zα∂k+1
1 uII ∈ CT (L2).

We apply operator Zα∂k+1
1 , |α|+ 2k = m− 2, to the part II of (103)1 and obtain an equation similar

to (108) of the form
(L̃+ C̃k)Zα∂k+1

1 uII = Gk, (109)

where C̃k ∈ CT (Hs−3
∗ ) is a suitable linear operator. The right-hand side Gk contains derivatives of u of

order m (in Hm
∗ , i.e. counting 1 for each tangential derivative and 2 for normal derivatives), but contains

only normal derivatives that have already been estimated. We infer Gk ∈ L2(QT ). Again it is crucial
that the boundary matrix of L̃ vanishes at {x1 = 0}. We infer that the solution Zα∂k+1

1 uII is in CT (L2)
for all α, k with |α| + 2k = m − 2. By repeating this procedure we obtain the result for any k ≤ [m/2],
hence u ∈ CT (Hm

∗ ).

Remark 28. In order to show that u ∈ CT (Hm
∗ ), an analysis of the definition of spaces Hm

∗ shows that
it is sufficient to prove Zu ∈ CT (Hm−1

∗ ), and that ∂m/21 u ∈ CT (L2) when m is even. In this respect, a
simple proof of Zu ∈ CT (Hm−1

∗ ) could seem as follows. Let us apply the operators Zi to (103) and use
(99); this gives the problem

LZiu+
∑
|β|=1 ΓβZβu = (Zi + Ψ)F + Γ0u, in Rn+×]0, T [,

MZiu = ZiG, on {x1 = 0} × Rn−1
x′ ×]0, T [,

Ziu|t=0 = Zif, in Rn+,
(110)

for i = 1, . . . , n + 1. Lemma 41 shows that Γβ ∈ CT (Hs−3
∗ ), Γ0 ∈ CT (Hs−1

∗ ), Ψ ∈ CT (Hs−1
∗ ). Using the

result of Theorem 38, we easily verify that (Zi + Ψ)F + Γ0u ∈ Hm−1
∗ (QT ). Moreover it is clear that

ZiG ∈ Hm−1(ΣT ), Zif ∈ Hm−1
∗ (Ω) with Zif

(k) ∈ Hm−k−1
∗ (Ω), k = 1, · · · ,m − 1, and the compatibility

conditions for (110) hold up to order m− 2.
Unfortunately, it is also clear that we can’t apply Theorem 2 (with order m − 1), because Γβ is not

smooth enough for being absorbed in the 0-th order term of the operator, required to be in CT (Hs−1
∗ ). In

fact, with this approach we are not using well the compensation in the loss of derivatives that appears
when differentiating products of functions.

The apriori estimate (9) follows from (93) (namely estimate (9) in case m = 1, proved in Theorem
24) applied to the solution of (106), plus standard L2 energy estimates for equations (108) and (109),
and the direct estimate of the normal derivative of u by tangential derivatives via (104). All products of
functions are estimated in spaces Hm

∗ by the rules given in Theorem 38 and Lemmata 39 and 40 in the
Appendix. We refer the reader to [5, 27, 29] for all details.

We observe that the constant Cm in (9) not only depends on the norms of the S0, Aj ’s in CT (Hs
∗),

and the norm of B in CT (Hs−1
∗ ) if m ≤ s − 1, or in CT (Hs

∗) if m = s. It depends also on the constant
of positive definiteness of the symmetrizing matrix S0, and on an upper bound for the inverse of the
nonsingular part of the boundary matrix (e.g. a constant C such that |(ÂI,I1 )−1| ≤ C in (51), on each
patch).

This concludes the proof of Theorem 2.

6.4. Homogeneous boundary conditions. The proof of Theorem 3 for homogeneous boundary con-
ditions, when assumption (E) is substituted by (F), is similar to that of Theorem 2, and so we will omit
it.

Appendix A. Proof of Proposition 12

Let χ̃ε be the function defined in (40). We begin giving some properties of its Fourier transform.
Firstly, we notice that from formula (38), the following estimates for the derivatives of χ̂ can be easily
derived

∂αχ̂(ξ) = O(|ξ|p−|α|) , ξ → 0 , (111)
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for all α ∈ Nn with |α| ≤ p.
In the sequel, we denote by ξ′ the Fourier dual variables of y′ ∈ Rn.

Lemma 29. Let χ̃ε be defined in (40). There exists a positive constant C such that

|̂̃χε(ξ′)| ≤ Cεp(∑
j<p

|ξ′|p−j + 1) , ∀ξ′ ∈ Rn ,∀ε ∈]0, 1[ . (112)

Proof. By definition, we find for ̂̃χε the following formulẫχε(ξ′) =
∫

Rn+1
e−i(y1,y

′)·(0,εξ′)e−
εy1
2 χ(y)dy. (113)

A Taylor’s expansion of e−
εy1
2 gives

e−
εy1
2 =

∑
j<p

(−εy1/2)j

j!
+

1
p!

(−εy1/2)pe−
θεy1

2

for a suitable θ ∈]0, 1[. Inserting in (113) we get̂̃χε(ξ′) =
∑
j<p

Cjε
j ŷj1χ(0, εξ′) + Cpε

p

∫
Rn+1

e−i(y1,y
′)·(0,εξ′)yp1e

− θεy12 χ(y)dy,

with positive constants Cj , j ≤ p, independent of ε. From ŷj1χ(ξ) = (i∂ξ1)jχ̂(ξ) and using estimates (111)
(and that χ̂ is rapidly decreasing), we derive

|̂̃χε(ξ′)| ≤ ∑
j<p

Cjε
j |∂jξ1 χ̂(0, εξ′)|+ Cpε

p
∫

suppχ
|y1|pe

|y1|
2 |χ(y)|dy

≤
∑
j<p

Cjε
j |εξ′|p−j + Cpε

pM ≤ Cεp(
∑
j<p

|ξ′|p−j + 1) , ∀ ξ′ ∈ Rn ,

with C > 0 independent of ε. �

Lemma 30. For all N > 0 there exists a constant CN > 0 such that

(1 + |εξ′|2)N |̂̃χε(ξ′)| ≤ CN , ∀ξ′ ∈ Rn , ∀ε ∈]0, 1[ . (114)

Proof. By Newton’s formula, we compute

(1 + |εξ′|2)N =
∑
|α′|≤N

Cα′(εξ′)2α′ ,

for suitable constants Cα′ > 0. To derive (114), it is enough to bound (εξ′)2α′ ̂̃χε(ξ′) uniformly in ε. Using
formula (40) and integrating by parts, we obtain

(εξ′)2α′ ̂̃χε(ξ′) = (−1)|α
′|
∫

Rn+1
e−iεξ

′·y′∂2α′

y′ χ(y1, y
′)e−

εy1
2 dy1dy

′,

hence
|(εξ′)2α′ ̂̃χε(ξ′)| ≤ ∫

suppχ

|∂2α′

y′ χ(y1, y
′)|e

|y1|
2 dy1dy

′ =: Cα′ .

Inequality (114) immediately follows summing over all α′ ∈ Nn with |α′| ≤ N . �

We note that the interesting feature of both estimates (112), (114) consists of the uniformity with
respect to ε: this seems to be not a trivial consequence of the rapid decrease of ̂̃χε, due to the kind of
dependence on ε displayed by (40).

Proof of Proposition 12. The proof follows by adapting that of Theorem 2.4.1 in Hörmander [13]. We
divide it in two steps.
1st step: Right-hand estimate in (41).
Using Parseval’s formula we obtain∫ 1

0

||u ∗ χ̃ε||2L2(Rn)ε
−2k

(
1 +

δ2

ε2

)−1
dε

ε
= (2π)−n

∫
Rn
|û(ξ′)|2F (ξ′, δ)dξ′, (115)
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where

F (ξ′, δ) =
∫ 1

0

|̂̃χε(ξ′)|2ε−2k

(
1 +

δ2

ε2

)−1
dε

ε
.

Using Lemmata 29, 30 and arguing in a similar way as in [13, Theorem 2.4.1], we deduce the following
estimate

F (ξ′, δ) ≤ C(1 + |ξ′|2)k(1 + |δξ′|2)−1 , ∀δ ∈]0, 1] , ∀ ξ′ ∈ Rn . (116)

Then, (115) and (116) immediately give∫ 1

0
||u ∗ χ̃ε||2L2(Rn)ε

−2k
(

1 + δ2

ε2

)−1
dε
ε

≤ C(2π)−n
∫

Rn |û(ξ′)|2(1 + |ξ′|2)k(1 + |δξ′|2)−1dξ′ = C||u||2Rn,k−1,δ

(117)

from which the right-hand inequality in (41) follows, observing that

||u||Hk−1(Rn) := ||u||Rn,k−1,1 ≤ ||u||Rn,k−1,δ ∀ 0 < δ ≤ 1.

2nd step: Left-hand estimate in (41).
We observe that our estimate can be obtained as a consequence of the following two facts:

h1. There exist M ≥ 1 and C1 > 0 such that

F (ξ′, δ) ≥ C1(1 + |ξ′|2)k(1 + |δξ′|2)−1 , ∀ ξ′ ∈ Rn : |ξ′| ≥M , ∀δ ∈]0, 1];

h2. There exists C2 > 0 such that

(1 + |ξ′|2)k−1 ≥ C2(1 + |ξ′|2)k(1 + |δξ′|2)−1 , ∀ ξ′ ∈ Rn : |ξ′| ≤M , ∀δ ∈]0, 1],

with the same M involved in h1.
Indeed, if h1, h2 are fulfilled, we get∫ 1

0
||u ∗ χ̃ε||2L2(Rn)ε

−2k
(

1 + δ2

ε2

)−1
dε
ε + ||u||2Rn,k−1

= (2π)−n
∫

Rn |û(ξ′)|2F (ξ′, δ)dξ′ + (2π)−n
∫

Rn |û(ξ′)|2(1 + |ξ′|2)k−1dξ′

≥ (2π)−nC1

∫
|ξ′|≥M |û(ξ′)|2(1 + |ξ′|2)k(1 + |δξ′|2)−1dξ′

+(2π)−nC2

∫
|ξ′|≤M |û(ξ′)|2(1 + |ξ′|2)k(1 + |δξ′|2)−1dξ′

≥ min{C1, C2}||u||2Rn,k−1,δ.

It remains to prove that h1 and h2 are satisfied. h2 is trivial; hence we concentrate now to prove that
h1 is fulfilled.
Since χ ∈ C∞0 (Rn+1), Paley-Wiener’s theorem gives that its Fourier transform χ̂(ξ), for ξ ∈ Rn+1, admits
an extension to the complex space Cn+1, denoted again by χ̂, which is an entire analytic function on
Cn+1. By the definition of functions χ̃ε, it follows that

̂̃χε(ξ′) = χ̂(− iε
2
, εξ′) , ∀ ξ′ ∈ Rn .

We use this identity to write F (ξ′, δ), appearing in formula (115), as

F (ξ′, δ) =
∫ 1

0

|χ̂(− iε
2
, εξ′)|2ε−2k

(
1 +

δ2

ε2

)−1
dε

ε
.

We want to provide for F (ξ′, δ) an estimate from below of the type considered in h1. To do so, for |ξ′| ≥ 1
we split the integral above as

F (ξ′, δ) =
∫ σ

2|ξ′|
0 +

∫ σ
|ξ′|
σ

2|ξ′|
+
∫ 1
σ
|ξ′|

,
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where 0 < σ < 1 will be chosen later on. From the above decomposition it follows that

F (ξ′, δ) ≥
∫ σ
|ξ′|
σ

2|ξ′|
|χ̂(− iε2 , εξ

′)|2ε−2k
(

1 + δ2

ε2

)−1
dε
ε

≥ |ξ′|2k(1 + | 2δξ
′

σ |
2)−1

∫ σ
|ξ′|
σ

2|ξ′|
|χ̂(− iε2 , εξ

′)|2 ε
−2k

|ξ′|2k
dε
ε

= |ξ′|2k(1 + | 2δξ
′

σ |
2)−1

∫ σ
σ
2
|χ̂(− it

2|ξ′| , tη)|2t−2k dt
t ,

where, in the last line, we have used the change of variable t = ε|ξ′| and we have set η = ξ′

|ξ′| .
Thanks to the last inequality, in order to prove h1, it is sufficient to prove the following statement

h. There exist σ ∈]0, 1[, M ≥ 1 and C > 0, such that for all ξ′ ∈ Rn with |ξ′| ≥M

I(ξ′) :=
∫ σ

σ
2

|χ̂(− it

2|ξ′|
, tη)|2t−2k dt

t
≥ C. (118)

Note that by the trivial inequality

|χ̂(− it

2|ξ′|
, tη)| ≥ |χ̂(0, tη)| − |χ̂(− it

2|ξ′|
, tη)− χ̂(0, tη)|,

to prove h it is sufficient to prove that the following two claims are true:
Claim 1 There exist σ ∈]0, 1[ and C2 > 0 such that

|χ̂(0, tη)| ≥ C2 , ∀ t ∈ [σ/2, σ] , ∀η ∈ Rn, |η| = 1 . (119)

Claim 2 There exists M ≥ 1 such that for all ξ′ ∈ Rn with |ξ′| ≥M and all t ∈ [σ/2, σ] then

|χ̂(− it

2|ξ′|
, tη)− χ̂(0, tη)| ≤ C2

2
,

with the same C2 involved in Claim 1.
In fact, from Claims 1 and 2, we get

|χ̂(− it

2|ξ′|
, tη)| ≥ |χ̂(0, tη)| − |χ̂(− it

2|ξ′|
, tη)− χ̂(0, tη)| ≥ C2 −

C2

2
=
C2

2
,

for all ξ′ ∈ Rn with |ξ′| ≥ M and for all t ∈ [σ/2, σ]. The last estimate implies the statement in h,
provided that σ and M are the ones coming from Claims 1 and 2, respectively. To conclude, it remains
to prove Claims 1 and 2.
Proof of Claim 1. We use the explicit form of χ given by (38) to get χ̂(ζ) = |ζ|pφ̂(ζ), for ζ ∈ Cn+1. From
φ̂(0) 6= 0 and the continuity of φ̂ we obtain

∃C1 > 0 , ∃σ ∈]0, 1[ : |φ̂(0, tη)| ≥ C1 , ∀ t ∈]0, σ] , ∀η ∈ Rn, |η| = 1 . (120)

Then (120) implies

∃C2 > 0 : |χ̂(0, tη)| ≥ C2 , ∀ t ∈ [σ/2, σ] , ∀η ∈ Rn, |η| = 1 ,

with the same σ as in (120), which concludes the proof of Claim 1.
Proof of Claim 2. We first observe that, with the choice of σ coming from (120), for t ∈ [σ/2, σ] and |ξ′| ≥ 1
we find that the points (− it

2|ξ′| , tη), (0, tη) belong to the closed ball Bσ√5/2 := {ζ ∈ Cn+1 : |ζ| ≤ σ
√

5/2}.
Since χ̂ is uniformly continuous on Bσ

√
5/2, there exists a positive σ2 such that

|χ̂(− it

2|ξ′|
, tη)− χ̂(0, tη)| ≤ C2

2
, (121)

is satisfied as long as ∣∣∣∣(− it

2|ξ′|
, tη)− (0, tη)

∣∣∣∣ =
t

2|ξ′|
≤ σ2. (122)

In order to conclude, it remains to prove that there exists M ≥ 1 such that for all ξ′ ∈ Rn with |ξ′| ≥M ,
(122) holds for all t ∈ [σ/2, σ]; it can be proven that such an M exists and is given by M = max{1, σ

2σ2
}.

This completes the proof of Proposition 12.



CHARACTERISTIC SYMMETRIZABLE SYSTEMS 29

Appendix B. Properties of anisotropic Sobolev spaces

This section is devoted to some fundamental properties of function spaces Hm
∗ and Hm

∗∗. We improve
significantly known results in the literature [20, 29, 34] about imbeddings and products of functions,
which are the fundamental tools for calculus in spaces Hm

∗ . In the sequel, we denote by C∞(0)(Ω) the set
of restrictions to Ω of functions of C∞0 (Rn). We first recall the following result.

Theorem 31. For all integers m ≥ 1, C∞(0)(Ω) is dense in Hm
∗ (Ω) and dense in Hm

∗∗(Ω).

Proof. See [20]. �

We have the following estimates of Gagliardo-Nirenberg type.

Lemma 32. For all functions u ∈ Hm
∗ (Ω) ∩ L∞(Ω) one has

‖Zα∂hx1
u‖L2/γ(Ω) ≤ C‖u‖

1−γ
L∞(Ω)‖u‖

γ
Hm∗ (Ω), (123)

where γ = 1− (1− h
[m/2] )(1−

|α|
m−2h ), and provided that 0 ≤ h < [m/2], 0 ≤ |α| < m− 2h.

Proof. By introducing a suitable partition of unity and a local coordinate change we reduce to the case
Rn+ = {x = (x1, x

′)|x1 > 0, x′ ∈ Rn−1}. Given u ∈ Hm
∗ (Rn+), we extend it to the whole space as in [14]

by setting ũ(x1, x
′) = u(x1, x

′) for x1 > 0 and ũ(x1, x
′) =

∑m
j=1 αju(−jx1, x

′) for x1 < 0. We impose
the continuity conditions of ∂kx1

ũ at x1 = 0 for k = 0, . . . ,m − 1, which yield
∑m
j=1 αj(−j)k = 1 for

k = 0, . . . ,m − 1. As this linear system has a Vandermonde matrix, it is invertible and the coefficients
α1, . . . , αm are defined in a unique way. The extension is a linear continuous operator from Hm

∗ (Rn+)
into Hm

∗ (Rn) (with an obvious definition of the last space). Moreover, it is such that ‖Zα∂kx1
ũ‖Lp(Rn) ≤

C‖Zα∂kx1
u‖Lp(Rn+) for all |α|+ 2k ≤ m and all 1 ≤ p ≤ ∞. Therefore, from now on we may work in Rn;

we also write u instead of ũ.
Let p ≥ 2. By integration over Ω = Rn of Zj(uZju |Zju|p−2) we obtain as in [10] the estimate

‖Zju‖2Lp(Ω) ≤ (p− 1)‖u‖Lq(Ω)

(
‖Z2

j u‖Lr(Ω) + δ1j‖Z1u‖Lr(Ω)

)
(124)

for all j = 1, . . . , n and 2/p = 1/q+ 1/r. By multiple application of (124) we obtain (proof by induction)

‖Zαu‖Lp(Ω) ≤ C‖u‖
1−|α|/m
Lq(Ω)

∑
1≤|β|≤m ‖Zβu‖

|α|/m
Lr(Ω), (125)

for 1/p = (1− |α|/m)1/q + (|α|/m) 1/r, and 1 ≤ |α| < m. It yields in particular

‖Zαu‖L2m/|α|(Ω) ≤ C‖u‖
1−|α|/m
L∞(Ω)

∑
1≤|β|≤m ‖Zβu‖

|α|/m
L2(Ω), (126)

for 1 ≤ |α| < m. Similarly we can obtain

‖∂hx1
u‖L2[m/2]/h(Ω) ≤ C‖u‖

1−h/[m/2]
L∞(Ω) ‖∂[m/2]

x1 u‖h/[m/2]
L2(Ω) , (127)

for 1 ≤ h < [m/2]. Combining (125), (126) and (127) gives

‖Zα∂hx1
u‖Lp(Ω) ≤ C‖∂hx1

u‖1−|α|/(m−2h)
Lq(Ω)

∑
1≤|δ|≤m−2h ‖Zδ∂hx1

u‖|α|/(m−2h)
L2(Ω)

≤ C
(
‖u‖1−h/[m/2]

L∞(Ω) ‖∂[m/2]
x1 u‖h/[m/2]

L2(Ω)

)1−|α|/(m−2h)∑
1≤|δ|≤m−2h ‖Zδ∂hx1

u‖|α|/(m−2h)
L2(Ω)

(128)

where 1/p = (1− |α|/(m− 2h))1/q+ (|α|/(m− 2h)) 1/2, 1/q = (h/[m/2])1/2 and 1 ≤ |α| < m− 2h, 1 ≤
h < [m/2]. From (128) we readily obtain (123). �

Let us define the space

W 1,∞
∗ (Ω) = {u ∈ L∞(Ω) : Ziu ∈ L∞(Ω), i = 1 . . . , n},

equipped with its natural norm. From Lemma 32 we deduce the following Moser-type inequalities.
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Theorem 33. Let m ∈ N, m ≥ 1. If m is 1 or even, for all functions u and v in Hm
∗ (Ω) ∩ L∞(Ω) one

has
‖uv‖Hm∗ (Ω) ≤ C(‖u‖Hm∗ (Ω)‖v‖L∞(Ω) + ‖u‖L∞(Ω)‖v‖Hm∗ (Ω)). (129)

If m ≥ 3 is odd, for all functions u and v in Hm
∗ (Ω) ∩W 1,∞

∗ (Ω) one has

‖uv‖Hm∗ (Ω) ≤ C(‖u‖Hm∗ (Ω)‖v‖W 1,∞
∗ (Ω) + ‖u‖W 1,∞

∗ (Ω)‖v‖Hm∗ (Ω)). (130)

Proof. If m = 1 the proof is obvious, so we consider the case m ≥ 2. Again, by localization we reduce to
the case Ω = Rn+ = {x = (x1, x

′)|x1 > 0, x′ ∈ Rn−1}. Assume first that m is even. By Leibniz’s rule we
have

‖uv‖Hm∗ (Ω) ≤ C
∑

|α|+2k≤m

∑
β≤α,h≤k

‖Zα−β∂k−hx1
uZβ∂hx1

v‖L2(Ω) = I1 + I2,

where we have denoted

I1 = C
∑

|α|+2k≤m

(
‖v Zα∂kx1

u‖L2(Ω) + ‖uZα∂kx1
v‖L2(Ω)

)
,

I2 = C
∑

|α|+2k≤m

∑
(β,h)∈K1(α,k)

‖Zα−β∂k−hx1
uZβ∂hx1

v‖L2(Ω),

K1(α, k) = {(β, h) : β ≤ α, h ≤ k, 1 ≤ |β|+ 2h ≤ m− 1}.
It is clear that I1 may be readily estimated by the right-hand side of (129). As for I2, from the Hölder’s
inequality we get

‖Zα−β∂k−hx1
uZβ∂hx1

v‖L2(Ω) ≤ C‖Zα−β∂k−hx1
u‖L2/γ(Ω)‖Zβ∂hx1

v‖L2/δ(Ω) (131)

where γ and δ must satisfy γ + δ = 1, when |α| + 2k = m. In view of (123) we choose γ = 1 − (1 −
k−h
[m/2] )(1 −

|α−β|
m−2(k−h) ), δ = 1 − (1 − h

[m/2] )(1 −
|β|

m−2h ). Here we notice that for the indices in I2 one has
k− h < [m/2], h < [m/2], |α− β| < m− 2(k− h), |β| < m− 2h. This choice of γ and δ enjoys the above
requirement and yields, by applying (123),

‖Zα−β∂k−hx1
uZβ∂hx1

v‖L2(Ω) ≤ C‖u‖1−γL∞(Ω)‖u‖
γ
Hm∗ (Ω)‖v‖

γ
L∞(Ω)‖v‖

1−γ
Hm∗ (Ω)

≤ C(‖u‖L∞(Ω)‖v‖Hm∗ (Ω) + ‖u‖Hm∗ (Ω)‖v‖L∞(Ω)).
(132)

Adding over α, β and k, h completes the proof of (129). Assume now that m ≥ 3 is odd. By Leibniz’s
rule we have

‖uv‖Hm∗ (Ω) ≤ C
∑

|α|+2k≤m

∑
β≤α,h≤k

‖Zα−β∂k−hx1
uZβ∂hx1

v‖L2(Ω) = J1 + J2 + J3,

where we have denoted

J1 = C
∑

|α|+2k≤m

(
‖v Zα∂kx1

u‖L2(Ω) + ‖uZα∂kx1
v‖L2(Ω)

)
,

J2 = C
∑
|α|≤m

∑
β∈K2(α)

‖Zα−βuZβv‖L2(Ω),

J3 = C
∑

|α|+2k≤m,k≥1

∑
(β,h)∈K3(α,k)

‖Zα−β∂k−hx1
uZβ∂hx1

v‖L2(Ω),

K2(α) = {β : β ≤ α, 1 ≤ |β| ≤ m− 1},
K3(α, k) = {(β, h) : β ≤ α, h ≤ k, 1 ≤ |α− β|+ 2(k − h), 1 ≤ |β|+ 2h}.

Again, J1 may be readily estimated by the right-hand side of (129), and consequently by the right-hand
side of (130). As for J2, we can use the interpolating inequality (123) for purely tangential derivatives,
proceed as in the proof for I2, and get an estimate of J2 by the right-hand side of (129).

Finally, let us consider J3. If |α|+ 2k < m we may apply (129) with m− 1 (which is even) instead of
m. Let |α|+ 2k = m. Since m is odd, |α| is also odd. Then the generic term has either the form

‖Zγ−β∂k−hx1
ZuZβ∂hx1

v‖L2(Ω) (133)
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if |β| is even, where γ is such that |α| = |γ|+ 1, so that also |γ − β| is even, or the form

‖Zα−β∂k−hx1
uZδ∂hx1

Zv‖L2(Ω) (134)

if |β| is odd, where δ is such that |β| = |δ|+ 1, so that |α− β| and |δ| are both even.
If |β| is even and |β|+ 2h = m− 1 then |γ − β|+ 2(k − h) = 0 and the norm in (133) reduces to

‖ZuZβ∂hx1
v‖L2(Ω) ≤ C‖Zu‖L∞(Ω)‖v‖Hm−1

∗ (Ω). (135)

Otherwise we have |β| + 2h < m − 1 and we may check that |γ − β| + 2(k − h) < m − 1, k − h <
[(m− 1)/2], h < [(m− 1)/2]. Then the norm in (133) may be estimated as we did for I2, by applying the
interpolating inequalities (123) in Hm−1

∗ (Ω) to the functions Zu and v. The norm in (133) is estimated
by

C(‖Zu‖L∞(Ω)‖v‖Hm−1
∗ (Ω) + ‖v‖L∞(Ω)‖u‖Hm∗ (Ω)). (136)

If |β| is odd and |α− β|+ 2(k − h) = m− 1 then |β|+ 2h = 1 and the norm in (134) reduces to

‖Zα−β∂k−hx1
uZv‖L2(Ω) ≤ C‖u‖Hm−1

∗ (Ω)‖Zv‖L∞(Ω). (137)

Otherwise we have |α − β| + 2(k − h) < m − 1 and we may check that k − h < [(m − 1)/2], |δ| + 2h <
m−1, h < [(m−1)/2]. In this case the norm in (134) may be estimated again by applying the interpolating
inequalities (123) in Hm−1

∗ (Ω) to the functions u and Zv. The norm in (134) is estimated by

C(‖u‖Hm−1
∗ (Ω)‖Zv‖L∞(Ω) + ‖u‖L∞(Ω)‖v‖Hm∗ (Ω)). (138)

By (135), (136) and (137), (138) we conclude the estimate of J3. The proof of (130) is complete. �

Imbedding theorems for the anisotropic spaces Hm
∗ (Ω) follow in natural way from the inclusion

Hm
∗ (Ω) ↪→ H [m/2](Ω) and the imbedding theorems for standard Sobolev spaces, see [20, 29, 34]. In

particular, following this way one has the continuous imbedding Hm
∗ (Ω) ↪→ C0(Ω) if m is such that

[m/2] > n/2. This result is improved by the following theorem.

Theorem 34. Let Ω be a bounded open subset of Rn, n ≥ 2, with C∞ boundary. Then the continuous
imbedding H [(n+1)/2]+1

∗ (Ω) ↪→ C0(Ω) holds.

For example, in dimensions 2 and 3 we improve from H4
∗ (Ω) ↪→ H2(Ω) ↪→ C0(Ω) to H2

∗ (Ω) ↪→ C0(Ω)
and H3

∗ (Ω) ↪→ C0(Ω), respectively. We also observe that, for n even, the result improves the standard
imbedding H [n/2]+1(Ω) ↪→ C0(Ω) to H [n/2]+1

∗ (Ω) ↪→ C0(Ω).

Proof. We observe that C∞(Ω) is dense in Hm
∗ (Ω) from Lemma 31. Thus it is sufficient to prove that

||u||L∞(Ω) ≤ C||u||Hm∗ (Ω),

for all u ∈ C∞(Ω), where m = [(n + 1)/2] + 1. By introducing a suitable partition of unity and local
coordinate change we reduce to the case Ω = Rn+ = {x = (x1, x

′)|x1 > 0, x′ ∈ Rn−1}, u ∈ C∞(0)(R
n
+). We

notice that m = [n/2] + 1 if n is even, while m = [n/2] + 2 if n is odd. For any x1 we have

||u(x1, ·)||2Hm−1(Rn−1) = (2π)−n+1

∫
Rn−1

| < ξ′ >m−1 û(x1, ξ
′)|2dξ′ (139)

where û denotes the partial Fourier transform of u defined by

û(x1, ξ
′) =

∫
Rn−1

e−ix
′·ξ′u(x1, x

′)dx′
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and where < ξ′ >=
√

1 + |ξ′|2. The right-hand side of (139) is equal to (< = real part)

−(2π)−n+1

∫
Rn−1

< ξ′ >2m−2 (
∫ ∞
x1

∂1|û(ξ1, ξ′)|2dξ1) dξ′

= −(2π)−n+1

∫
Rn−1

< ξ′ >2m−2 2<(
∫ ∞
x1

û(ξ)∂1û(ξ) dξ1) dξ′

= −2(2π)−n+1<
∫ +∞

x1

∫
Rn−1

< ξ′ >m û(ξ) × < ξ′ >m−2 ∂1û(ξ) dξ

≤ 2||u||2Hm∗ (Rn+),

by application of the Cauchy-Schwarz inequality. Thus we have

||u(x1, ·)||Hm−1(Rn−1) ≤
√

2||u||Hm∗ (Rn+). (140)

From the definition of m we infer 2(m−1) > n−1, which yields the continuous imbedding Hm−1(Rn−1) ↪→
C0
B(Rn−1). From (140) and this last inclusion we obtain the thesis. �

Considering the space Hm
∗∗(Ω) gives a further improvement. Observe that the following criterion on

m, m > n/2, is the same of standard Sobolev spaces. The imbedding Hm
∗∗(Ω) ↪→ C0(Ω) was previously

known only for m > 2[n/2] + 1, see [34].

Theorem 35. Let Ω be a bounded open subset of Rn, n ≥ 2, with C∞ boundary. If m > n/2 then
Hm
∗∗(Ω) ↪→ C0(Ω).

Proof. We proceed as in the proof of Theorem 34. For any x1 we find

||u(x1, ·)||2Hm−1/2(Rn−1) = −2(2π)−n+1<
∫ +∞

x1

∫
Rn−1

< ξ′ >m û(ξ) × < ξ′ >m−1 ∂1û(ξ) dξ

≤ 2||u||2Hm∗∗(Rn+),
(141)

by application of the Cauchy-Schwarz inequality. If m > n/2 we infer 2(m− 1/2) > n− 1, which yields
the continuous imbedding Hm−1/2(Rn−1) ↪→ C0

B(Rn−1). From (141) and this last inclusion we obtain
the thesis. �

From Theorems 33 and 34 we immediately deduce the following theorem about products of functions.

Theorem 36. Let m ≥
[
(n + 1)/2

]
+ 2. Consider functions u ∈ Hm

∗ (Ω) and v ∈ Hm
∗ (Ω). Then

uv ∈ Hm
∗ (Ω) and

‖uv‖Hm∗ (Ω) ≤ c‖u‖Hm∗ (Ω)‖v‖Hm∗ (Ω).

The following theorem provides some summability properties of anisotropic Sobolev functions with
low order of smoothness.

Theorem 37. Let Ω be a bounded open subset of Rn, where n ≥ 4, with C∞ boundary. Then the
following continuous imbeddings hold true:

a. If n > 5 and 2 ≤ m < n−1
2 , then

Hm
∗ (Ω) ↪→ Lr(Ω) , ∀r ∈ [2, r∗] ,

1
r∗

=
1
2
− m

n+ 1
. (142)

b. If n ≥ 5 is odd, then

H
n−1

2
∗ (Ω) ↪→ Lr(Ω) , ∀ r ∈ [2, n+ 1[ . (143)

c. If n ≥ 4 is even, then

H
n
2
∗ (Ω) ↪→ Lr(Ω) , ∀ r ∈ [2, 2n] . (144)
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Proof. As in the proof of Theorem 34, by introducing a partition of unity and performing local changes
of coordinates, we may reduce to the case Ω = Rn+. For n > 5, let m be a given integer such that
2 ≤ m < n−1

2 .
In order to prove the first imbedding (142), firstly we use the standard Sobolev imbedding

Hm−1(Rn−1) ↪→ Lq(Rn−1) , (145)

where 1
q = 1

2 −
m−1
n−1 > 0, to find that the inequality

||u(x1, ·)||Lq(Rn−1) ≤ C||u(x1, ·)||Hm−1(Rn−1)

holds for all u ∈ C∞(0)(R
n
+) and a positive constant C independent of u. Then, estimating ||u(x1, ·)||Hm−1(Rn−1)

as in the proof of Theorem 34 gives

||u||L∞(0,+∞;Lq(Rn−1)) ≤ C||u||Hm∗ (Rn+) . (146)

Similarly, from the imbedding Hm(Rn−1) ↪→ Lp(Rn−1), with 1
p = 1

2 −
m
n−1 > 0, we derive

||u||2L2(0,+∞;Lp(Rn−1)) ≤ C
∫ +∞

0

||u(x1, ·)||2Hm(Rn−1)dx1 ≤ C||u||2Hm∗ (Rn+) , (147)

for a suitable C > 0 independent of u.
Let θ be arbitrarily fixed in ]0, 1[. For 1

r = θ
q + 1−θ

p interpolation between Lq(Rn−1) and Lp(Rn−1) and
Fubini’s theorem gives

||u||rLr(Rn+) =
∫ +∞

0
||u(x1, ·)||rLr(Rn−1)dx1 ≤

∫ +∞
0
||u(x1, ·)||rθLq(Rn−1)||u(x1, ·)||r(1−θ)Lp(Rn−1) dx1

≤ ||u||rθL∞(0,+∞;Lq(Rn−1))

∫ +∞
0
||u(x1, ·)||r(1−θ)Lp(Rn−1) dx1 .

(148)

Setting r(1− θ) = 2, from 1
r = θ

q + 1−θ
p we compute for θ and r the values

θ = θ∗ :=
1
2 −

1
p

1
2 −

1
p + 1

q

=
2m
n+ 1

, r = r∗ :=
2(n+ 1)

n+ 1− 2m
.

Setting r = r∗ and θ = θ∗ in (148) and using estimates (146) and (147), we get

||u||Lr∗ (Rn+) ≤ C||u||Hm∗ (Rn+) , (149)

which proves the imbedding Hm
∗ (Rn+) ↪→ Lr

∗
(Rn+). The imbedding Hm

∗ (Rn+) ↪→ Lr(Rn+) for all r ∈ [2, r∗]
immediately follows from the interpolation between L2(Rn+) and Lr

∗
(Rn+). This ends the proof of (142).

Assume now that n is odd and ≥ 5. To prove the continuous imbedding (143), we apply again
the inequality (146) for m = n−1

2 and q = n − 1 (recall that (146) follows from (145) that is true if
m− 1 < n−1

2 ). Then use the Sobolev imbedding

H
n−1

2 (Rn−1) ↪→ Lp(Rn−1) , ∀ p ∈ [2,+∞[ ,

to find
||u||2L2(0,+∞;Lp(Rn−1)) ≤ C||u||

2

H
n−1

2
∗ (Rn+)

, ∀ p ∈ [2,+∞[ .

Arguing as before, we get for all p ≥ 2

||u||rLr(Rn+) ≤ ||u||
rθ
L∞(0,+∞;Lq(Rn−1))

∫ +∞
0
||u(x1, ·)||r(1−θ)Lp(Rn−1) dx1 , (150)

where θ ∈ [0, 1] and r are such that r(1− θ) = 2 and 1
r = θ

q + 1−θ
p = θ

n−1 + 1−θ
p ; hence we derive as before

||u||Lr(Rn+) ≤ C||u||
H
n−1

2
∗ (Rn+)

(151)

where r = 2(n − 1)( 1
2 −

1
p + 1

n−1 ). Then the continuous imbedding (143) follows by noticing that the
function p 7→ r(p) = 2(n− 1)( 1

2 −
1
p + 1

n−1 ) is increasing and continuous over [2,+∞[ and r(p)↗ n+ 1
as p↗ +∞.
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To conclude, we prove the continuous imbedding (144). Thus, we assume that n ≥ 4 is even. Again,
by (145) for m = n

2 we derive that

||u||L∞(0,+∞;Lq(Rn−1)) ≤ C||u||Hm∗ (Rn+) ,

where 1
q = 1

2 −
m−1
n−1 = 1

2(n−1) . Moreover, since n
2 > n−1

2 , the standard imbedding H
n
2 (Rn−1) ↪→

L∞(Rn−1) gives
||u||L2(0,+∞;L∞(Rn−1)) ≤ C||u||

H
n
2
∗ (Rn+)

.

Then for all r > q we find

||u(x1, ·)||rLr(Rn−1) ≤ ||u(x1, ·)||r−qL∞(Rn−1)||u(x1, ·)||qLq(Rn−1) .

Hence

||u||rLr(Rn+) =
∫ +∞

0
||u(x1, ·)||rLr(Rn−1) dx1 ≤ ||u||qL∞(0,+∞;Lq(Rn−1))

∫ +∞
0
||u(x1, ·)||r−qL∞(Rn−1) dx1 .

Setting now r = q + 2 = 2n we derive the continuous imbedding H
n
2
∗ (Rn+) ↪→ L2n(Rn+). Interpolation

between L2(Rn+) and L2n(Rn+) gives the continuous imbeddings in (144).
�

The next theorem deals with the product of two anisotropic Sobolev functions, one of which has low
order of smoothness.

Theorem 38. Let m ≥ 1 be an integer and s = max
{
m,
[
n+1

2

]
+ 2
}

. For u ∈ Hm
∗ (Ω) and v ∈ Hs

∗(Ω)
then uv ∈ Hm

∗ (Ω) and
||uv||Hm∗ (Ω) ≤ c||u||Hm∗ (Ω)||v||Hs∗(Ω) . (152)

Proof. We suppose Ω = Rn+; the general case can be reduced to this case by localization and flattening
of the boundary.
If m = s ≥

[
n+1

2

]
+ 2 then the result of Theorem 38 is just the one of Theorem 36. So, let us assume

that 1 ≤ m < s =
[
n+1

2

]
+ 2. For m = 1 the result is true as a consequence of the imbedding Theorem

34; indeed for u ∈ H1
∗ (Rn+) and v ∈ H[n+1

2 ]+2
∗ (Rn+), then uv ∈ L2(Rn+). Moreover for all j = 1, . . . , n:

Zj(uv) = Zju v + uZjv

still belongs to L2(Rn+), as Zjv ∈ H
[n+1

2 ]+1
∗ (Rn+) ↪→ L∞(Rn+) (again from Theorem 34). For 2 ≤ m ≤ s−1,

assume the result has been already proven up to the order m− 1; we want to show that it is true up to
m. Let us consider u ∈ Hm

∗ (Rn+) and v ∈ Hs
∗(Rn+); by hypothesis, we know that uv ∈ Hm−1

∗ (Rn+). It
remains to prove that Zα∂k1 (uv) ∈ L2(Rn+), when |α|+ 2k = m. By Leibniz’s formula, we compute

||Zα∂k1 (uv)||L2(Rn+) ≤ C
∑

(β,h),(γ,l)∈I(α,k)

||Zβ∂h1 uZγ∂l1v||L2(Rn+) , (153)

where I(α, k) := {(β, h), (γ, l) : β + γ = α , h+ l = k}.
Let us assume n ≥ 4. We split I(α, k) as I(α, k) = I1(α, k) ∪ I2(α, k) ∪ I3(α, k) ∪ I4(α, k) ∪ I5(α, k),

where

I1(α, k) := {(β, h), (γ, l) ∈ I(α, k) : 2 ≤ m− |β| − 2h < n−1
2 and 2 ≤ s− |γ| − 2l < n−1

2 } ;

I2(α, k) := {(β, h), (γ, l) ∈ I(α, k) : m− |β| − 2h ≤ 1} ;

I3(α, k) := {(β, h), (γ, l) ∈ I(α, k) : s− |γ| − 2l ≤ 1} ;

I4(α, k) := {(β, h), (γ, l) ∈ I(α, k) : m− |β| − 2h ≥ n−1
2 } ;

I5(α, k) := {(β, h), (γ, l) ∈ I(α, k) : s− |γ| − 2l ≥ n−1
2 }

(154)
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(notice that I1(α, k) = ∅, as long as n ≤ 5). According to the splitting above, we decompose the sum in
the right-hand side of (153) as:∑

(β,h),(γ,l)∈I(α,k)

||Zβ∂h1 uZγ∂l1v||L2(Rn+) = K1 +K2 +K3 +K4 +K5 ,

and we estimate separately each term, where for i = 1, . . . , 5

Ki :=
∑

(β,h),(γ,l)∈Ii(α,k)

||Zβ∂h1 uZγ∂l1v||L2(Rn+) .

We consider K1. From Theorem 37, a., we have for all (β, h), (γ, l) ∈ I1(α, k):

Zβ∂h1 u ∈ H
m−|β|−2h
∗ (Rn+) ↪→ L2(Rn+) ∩ Lp(Rn+) , 1

p = 1
2 −

m−|β|−2h
n+1 ;

Zγ∂l1v ∈ H
s−|γ|−2l
∗ (Rn+) ↪→ L2(Rn+) ∩ Lq(Rn+) , 1

q = 1
2 −

s−|γ|−2l
n+1 .

Since 1
p + 1

q =: 1
s ≤

1
2 , we get

||Zβ∂h1 uZγ∂l1v||L2(Rn+) ≤ ||Zβ∂h1 u||L 2p
s (Rn+)

||Zγ∂l1v||L 2q
s (Rn+)

≤ ||Zβ∂h1 u||
1−θ1
L2(Rn+)||Z

β∂h1 u||
θ1
Lp(Rn+)||Z

γ∂l1v||
1−θ2
L2(Rn+)||Z

γ∂l1v||
θ2
Lq(Rn+)

≤ ||Zβ∂h1 u||
1−θ1
L2(Rn+)||Z

β∂h1 u||
θ1

H
m−|β|−2h
∗ (Rn+)

||Zγ∂l1v||
1−θ2
L2(Rn+)||Z

γ∂l1v||
θ2

H
s−|γ|−2l
∗ (Rn+)

≤ ||u||Hm∗ (Rn+)||v||Hs∗(Rn+) ,

where θ1 := p−s
p−2 and θ2 = q−s

q−2 .
Let us consider now K2. For all (β, h), (γ, l) ∈ I2(α, k), one has |β| + 2h ≥ m − 1 and |γ| + 2l =

m − (|β| + 2h) ≤ 1. Then, Zγ∂l1v ∈ Hs−1
∗ (Rn+) ↪→ L∞(Rn+) by the imbedding Theorem 34. One

immediately derives

||Zβ∂h1 uZγ∂l1v||L2(Rn+) ≤ ||Zβ∂h1 u||L2(Rn+)||Zγ∂l1v||L∞(Rn+) ≤ ||u||Hm∗ (Rn+)||v||Hs∗(Rn+) .

Let us estimate K3. Firstly, we observe that for 2 ≤ m < s − 1, I3(α, k) is empty, because (γ, l) ∈
I3(α, k) would satisfy both |γ| + 2l ≥ s − 1 and |γ| + 2l ≤ |α| + 2k = m. For m = s − 1, one computes
that all (β, h), (γ, l) ∈ I3(α, k) satisfy |γ|+ 2l = m (thus (γ, l) = (α, k)) and |β|+ 2h = m− (|γ|+ 2l) = 0
(thus (β, h) = (0, 0)). Again by Theorem 34 (applied to Hm

∗ (Rn+) = Hs−1
∗ (Rn+)), this yields

||Zβ∂h1 uZγ∂l1v||L2(Rn+) = ||uZα∂k1 v||L2(Rn+) ≤ ||u||L∞(Rn+)||Zα∂k1 v||L2(Rn+) ≤ ||u||Hm∗ (Rn+)||v||Hs∗(Rn+) .

Let us consider now the term K4. We divide the proof in several steps.
i) First, we assume that n ≥ 4 is even. Setting n = 2k (k integer ≥ 2), we compute that n−1

2 = k − 1
2

and
[
n+1

2

]
+ 1 = k + 1. Since each (β, h) ∈ I4(α, k) satisfies m− |β| − 2h ≥ n−1

2 and m ≤
[
n+1

2

]
+ 1, we

deduce k − 1
2 ≤ m ≤ k + 1, hence k ≤ m ≤ k + 1.

i.1) For m = k, inequality m− |β| − 2h ≥ n−1
2 implies that |β|+ 2h = 0 and |γ|+ 2l = m− |β| − 2h = k.

Hence, by the use of Theorem 37, c., we obtain

Zβ∂h1 u = u ∈ Hm
∗ (Rn+) = Hk

∗ (Rn+) = H
n
2
∗ (Rn+) ↪→ L2(Rn+) ∩ L2n(Rn+) ↪→ Ln(Rn+)

and, since s− k =
[
n+1

2

]
+ 2− k = 2, the imbedding Theorem for ordinary Sobolev spaces gives

Zγ∂l1v ∈ Hs−k
∗ (Rn+) = H2

∗ (Rn+) ↪→ H1(Rn+) ↪→ L2∗(Rn+) ,
1
2∗

=
1
2
− 1
n
.

Hence, we obtain that

||Zβ∂h1 uZγ∂l1v||L2(Rn+) = ||uZγ∂l1v||L2(Rn+) ≤ ||u||Ln(Rn+)||Zγ∂l1v||L2∗ (Rn+) ≤ ||u||Hm∗ (Rn+)||v||Hs∗(Rn+) .

i.2) For m = k + 1, we find that for (β, h) ∈ I4(α, k), m − |β| − 2h = k + 1 − |β| − 2h ≥ k − 1
2 implies

|β|+ 2h ≤ 1. We have to consider two cases.
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i.2.1) For |β| + 2h = 0, then |γ| + 2l = k + 1; hence by Theorem 34 we get Zβ∂h1 u = u ∈ Hm
∗ (Rn+) =

H
[n+1

2 ]+1
∗ (Rn+) ↪→ L∞(Rn+), then

||Zβ∂h1 uZγ∂l1v||L2(Rn+) ≤ ||u||L∞(Rn+)||Zγ∂l1v||L2(Rn+) ≤ ||u||Hm∗ (Rn+)||v||Hs∗(Rn+) .

i.2.2) For |β|+ 2h = 1 we have |γ|+ 2l = k; then, as in step i.1), we find

Zβ∂h1 u ∈ Hk
∗ (Rn+) = H

n
2
∗ (Rn+) ↪→ L2(Rn+) ∩ L2n(Rn+) ↪→ Ln(Rn+) ,

and

Zγ∂l1v ∈ Hs−k
∗ (Rn+) = H2

∗ (Rn+) ↪→ H1(Rn+) ↪→ L2∗(Rn+) ,
1
2∗

=
1
2
− 1
n
.

and we conclude as for i.1).
ii) Assume now that n ≥ 5 is odd; setting n = 2k + 1 (k integer ≥ 2), we compute n−1

2 = k and[
n+1

2

]
+ 1 = k + 2. Hence, from m − |β| − 2h ≥ n−1

2 and m ≤
[
n+1

2

]
+ 1, we find that k ≤ m ≤ k + 2.

We have to consider three different cases.
ii.1) For m = k, inequalities k ≥ m− |β| − 2h ≥ n−1

2 = k imply that |β|+ 2h = 0 and |γ|+ 2l = k. Then,
by Theorem 37, b., we get

Zβ∂h1 u = u ∈ Hk
∗ (Rn+) = H

n−1
2
∗ (Rn+) ↪→ Lr(Rn+) , ∀ r ∈ [2, n+ 1[ (155)

and, since s− k =
[
n+1

2

]
+ 2− k = 3,

Zγ∂l1v ∈ Hs−k
∗ (Rn+) = H3

∗ (Rn+) ↪→ H1(Rn+) ↪→ L2∗(Rn+) ,
1
2∗

=
1
2
− 1
n
. (156)

Using (155) with r = n and (156), we conclude again as in step i.1).
ii.2) For m = k+ 1, inequality k+ 1− |β| − 2h ≥ n−1

2 = k gives that |β|+ 2h ≤ 1; moreover k = m− 1 ≤
|γ|+ 2l ≤ m = k + 1. Since s− (k + 1) =

[
n+1

2

]
+ 1− k = 2, applying again Theorem 37, b., for r = n,

and the ordinary Sobolev imbedding Theorem yield

Zβ∂h1 u ∈ Hm−1
∗ (Rn+) = Hk

∗ (Rn+) = H
n−1

2
∗ (Rn+) ↪→ Ln(Rn+) ,

Zγ∂l1v ∈ H
s−(k+1)
∗ (Rn+) = H2

∗ (Rn+) ↪→ H1(Rn+) ↪→ L2∗(Rn+) , 1
2∗ = 1

2 −
1
n

and we conclude as in the preceding case.
ii.3) For m = k+ 2, inequality k+ 2− |β| − 2h ≥ k implies |β|+ 2h ≤ 2. We consider two different cases.
ii.3.1) When 1 ≤ |β| + 2h ≤ 2 then k ≤ |γ| + 2l ≤ k + 1 and s − (k + 1) =

[
n+1

2

]
+ 1 − k = 2. Thus

Theorem 37, b., and the standard Sobolev imbedding Theorem imply again

Zβ∂h1 u ∈ Hm−2
∗ (Rn+) = Hk

∗ (Rn+) = H
n−1

2
∗ (Rn+) ↪→ Ln(Rn+),

Zγ∂l1v ∈ H
s−(k+1)
∗ (Rn+) = H2

∗ (Rn+) ↪→ L2∗(Rn+) , 1
2∗ = 1

2 −
1
n

and we conclude as in the preceding case.
ii.3.2) When |β|+ 2h = 0, Theorem 34 immediately yields

Zβ∂h1 u = u ∈ Hm
∗ (Rn+) = Hk+2

∗ (Rn+) = H
[n+1

2 ]+1
∗ (Rn+) ↪→ L∞(Rn+)

and we conclude as in case i.2.1) before.
Gathering all of the estimates collected in cases i.1),· · · , ii.3.2) above gives the desired estimate for K4.

At last, the estimate of K5 is deduced by similar arguments; therefore we omit it for shortness.
Gathering all of the estimates collected for each of the different terms K1, . . . ,K5 before gives that the
derivatives Zα∂h1 (uv) ∈ L2(Rn+), whenever |α| + 2k = m, then uv ∈ Hm

∗ (Rn+). Combining the found
estimates of K1, . . . ,K5 with (153) gives (152).
The argument above requires the use of Theorem 37, hence the dimension n has to be strictly larger than
3. We need to treat the cases n = 2 and n = 3 separately.
Case n = 2: in this case we compute s = [3/2] + 2 = 3 and what we need to prove is just that
uv ∈ H2

∗ (R2
+), whenever u ∈ H2

∗ (R2
+) and v ∈ H3

∗ (R2
+) (recall that the result of Theorem 38 is true when

m = 1, for all dimensions n ≥ 2). Note that, for n = 2, Theorem 34 gives the continuous imbedding



CHARACTERISTIC SYMMETRIZABLE SYSTEMS 37

H2
∗ (R2

+) ↪→ L∞(R2
+). In view of H1

∗ (R2
+) ·H3

∗ (R2
+) ↪→ H1

∗ (R2
+), we already know that uv ∈ H1

∗ (R2
+). In

order to check that uv ∈ H2
∗ (R2

+) we still need to show that

∂1(uv) ∈ L2(R2
+) and Zj(uv) ∈ H1

∗ (R2
+).

Leibniz’s formula gives ∂1(uv) = ∂1u v + u ∂1v; hence ∂1(uv) ∈ L2(R2
+), as ∂1u, ∂1v ∈ L2(R2

+) and
u, v ∈ H2

∗ (R2
+) ↪→ L∞(R2

+). As for the tangential derivatives Zj(uv), Leibniz’s rule gives again Zj(uv) =
Zju v+ uZjv. Applying another first order tangential derivative and using once more Leibniz’s rule give
also

Zh(Zj(uv)) = Z2
h,ju v + ZjuZhv + ZhuZjv + uZ2

j,hv ∈ L2(R2
+) ,

since again all of the different terms, involved in the right-hand side of the identity above, are products
of a function in L2(R2

+) and a function in L∞(R2
+) (because of the continuous imbedding H2

∗ (R2
+) ↪→

L∞(R2
+)). This proves that Zj(uv) ∈ H1

∗ (R2
+) and completes the proof.

Case n = 3: The proof for the case n = 3 follows by similar arguments, by using the continuous
imbedding H3

∗ (R3
+) ↪→ L∞(R3

+) and standard imbeddings for the usual Sobolev spaces Hm(R3
+). We

omit it for shortness. This completes the proof. �

Finally, we give some lemmata useful in the proof of the main Theorem 2. The next lemma improves
the result of [29, Lemma A.4] from σ = 2[n/2] + 4 to σ = [(n+ 1)/2] + 3.

Lemma 39. Let σ ≥ [(n+ 1)/2] + 3 and let A be a matrix-valued function such that A ∈ Hσ
∗ (Rn+) and

A = 0 if x1 = 0. Then, for each regular enough vector-valued function u

‖A∂1u‖L2(Rn+) ≤ c‖A‖Hσ∗ (Rn+)‖Z1u‖L2(Rn+). (157)

Proof. Let

H(x1, x
′) = (x1)−1

∫ x1

0

∂1A(y, x′)dy = A(x1, x
′)/x1.

Then, A∂1u = Hx1∂1u. By Theorem 34 we infer

‖H‖L∞(Rn+) ≤ ‖∂1A‖L∞(Rn+) ≤ C‖∂1A‖H[(n+1)/2]+1
∗ (Rn+)

≤ C‖A‖
H

[(n+1)/2]+3
∗ (Rn+)

,

which gives (157). �

Lemma 40. Let σ ≥ 2. Let A ∈ Hσ
∗ (Rn+) be a matrix-valued function such that A = 0 if x1 = 0 and let

H be defined as in the proof of Lemma 39. Then

‖H‖Hσ−2
∗ (Rn+) ≤ c‖A‖Hσ∗ (Rn+).

Appendix C. Study of the commutator [L,Zi]

Let’s study in more detail the regularity of the matrices Γβ ,Γ0,Ψ in (99).

Lemma 41. Let σ be an integer such that σ ≥ [(n+ 1)/2] + 4. Assume that Aj ∈ CT (Hσ
∗ ), for j =

1, . . . , n, B ∈ CT (Hσ−2
∗ ). Then the matrices Γβ ,Γ0,Ψ of formula (99) satisfy

Γβ ∈ CT (Hσ−3
∗ ), Γ0 ∈ CT (Hσ−2

∗ ), Ψ ∈ CT (Hσ−1
∗ ).

Under the same assumption for Aj, if B ∈ CT (Hσ−1
∗ ) then Γ0 ∈ CT (Hσ−1

∗ ).

Proof. We develop our analysis as in [22]. Consider first the case i > 1. Then [A1∂1, Zi] = −(ZiA1)∂1.
Recalling the decomposition A1 = A1

1 + A2
1 given in (76), under our assumptions the matrix H defined

in (77) satisfies H ∈ CT (Hσ−2
∗ ). It follows that (ZiA2

1)∂1 = (ZiH)Z1 with coefficient ZiH ∈ CT (Hσ−3
∗ ).

This is the term giving the biggest loss of regularity. As for A1
1 we have

(ZiA1
1)∂1u = (ZiA

I,I
1 )∂1u

I = −(ZiA
I,I
1 )(AI,I1 )−1

(
AI,II1 ∂1u

II +
(∑n+1

j=2 AjZju+Bu− Lu
)I)

.

(158)
Since AI,II1 vanishes at {x1 = 0}, we can write

−(ZiA
I,I
1 )(AI,I1 )−1AI,II1 ∂1u

II = H2Z1u,
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with H2 defined as in (77). Using Theorem 38 yields H2 ∈ CT (Hσ−2
∗ ). For the other terms in (158) the

analysis is straightforward. If i = 1, we readily get the thesis from the equality

[A1∂1, Z1] = A1∂1 − (Z1A1)∂1 = L−
∑n+1
j=2 AjZj −B − (∂1A1)Z1.

The analysis for the other terms in L is similar. �
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